Haiyue Yuan, Shujun Li, P. Rusconi
{"title":"CogTool+","authors":"Haiyue Yuan, Shujun Li, P. Rusconi","doi":"10.1145/3447534","DOIUrl":null,"url":null,"abstract":"Cognitive modeling tools have been widely used by researchers and practitioners to help design, evaluate, and study computer user interfaces (UIs). Despite their usefulness, large-scale modeling tasks can still be very challenging due to the amount of manual work needed. To address this scalability challenge, we propose CogTool+, a new cognitive modeling software framework developed on top of the well-known software tool CogTool. CogTool+ addresses the scalability problem by supporting the following key features: (1) a higher level of parameterization and automation; (2) algorithmic components; (3) interfaces for using external data; and (4) a clear separation of tasks, which allows programmers and psychologists to define reusable components (e.g., algorithmic modules and behavioral templates) that can be used by UI/UX researchers and designers without the need to understand the low-level implementation details of such components. CogTool+ also supports mixed cognitive models required for many large-scale modeling tasks and provides an offline analyzer of simulation results. In order to show how CogTool+ can reduce the human effort required for large-scale modeling, we illustrate how it works using a pedagogical example, and demonstrate its actual performance by applying it to large-scale modeling tasks of two real-world user-authentication systems.","PeriodicalId":322583,"journal":{"name":"ACM Transactions on Computer-Human Interaction (TOCHI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer-Human Interaction (TOCHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

认知建模工具已被研究人员和实践者广泛用于帮助设计、评估和研究计算机用户界面(ui)。尽管它们很有用,但由于需要大量的手工工作,大规模建模任务仍然非常具有挑战性。为了解决这一可扩展性挑战,我们提出了CogTool+,这是一个基于知名软件工具CogTool开发的新的认知建模软件框架。CogTool+通过支持以下关键特性来解决可扩展性问题:(1)更高级别的参数化和自动化;(2)算法组件;(3)使用外部数据的接口;(4)明确的任务分离,允许程序员和心理学家定义可重用的组件(例如,算法模块和行为模板),UI/UX研究人员和设计人员可以使用这些组件,而无需了解这些组件的底层实现细节。CogTool+还支持许多大规模建模任务所需的混合认知模型,并提供仿真结果的离线分析器。为了展示CogTool+如何减少大规模建模所需的人力,我们使用一个教学示例来说明它是如何工作的,并通过将其应用于两个真实用户身份验证系统的大规模建模任务来演示其实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CogTool+
Cognitive modeling tools have been widely used by researchers and practitioners to help design, evaluate, and study computer user interfaces (UIs). Despite their usefulness, large-scale modeling tasks can still be very challenging due to the amount of manual work needed. To address this scalability challenge, we propose CogTool+, a new cognitive modeling software framework developed on top of the well-known software tool CogTool. CogTool+ addresses the scalability problem by supporting the following key features: (1) a higher level of parameterization and automation; (2) algorithmic components; (3) interfaces for using external data; and (4) a clear separation of tasks, which allows programmers and psychologists to define reusable components (e.g., algorithmic modules and behavioral templates) that can be used by UI/UX researchers and designers without the need to understand the low-level implementation details of such components. CogTool+ also supports mixed cognitive models required for many large-scale modeling tasks and provides an offline analyzer of simulation results. In order to show how CogTool+ can reduce the human effort required for large-scale modeling, we illustrate how it works using a pedagogical example, and demonstrate its actual performance by applying it to large-scale modeling tasks of two real-world user-authentication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing PairBuddy—A Conversational Agent for Pair Programming Iteratively Designing Gesture Vocabularies: A Survey and Analysis of Best Practices in the HCI Literature Understanding HCI Practices and Challenges of Experiment Reporting with Brain Signals: Towards Reproducibility and Reuse Understanding, Addressing, and Analysing Digital Eye Strain in Virtual Reality Head-Mounted Displays It’s Complicated: The Relationship between User Trust, Model Accuracy and Explanations in AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1