{"title":"CogTool+","authors":"Haiyue Yuan, Shujun Li, P. Rusconi","doi":"10.1145/3447534","DOIUrl":null,"url":null,"abstract":"Cognitive modeling tools have been widely used by researchers and practitioners to help design, evaluate, and study computer user interfaces (UIs). Despite their usefulness, large-scale modeling tasks can still be very challenging due to the amount of manual work needed. To address this scalability challenge, we propose CogTool+, a new cognitive modeling software framework developed on top of the well-known software tool CogTool. CogTool+ addresses the scalability problem by supporting the following key features: (1) a higher level of parameterization and automation; (2) algorithmic components; (3) interfaces for using external data; and (4) a clear separation of tasks, which allows programmers and psychologists to define reusable components (e.g., algorithmic modules and behavioral templates) that can be used by UI/UX researchers and designers without the need to understand the low-level implementation details of such components. CogTool+ also supports mixed cognitive models required for many large-scale modeling tasks and provides an offline analyzer of simulation results. In order to show how CogTool+ can reduce the human effort required for large-scale modeling, we illustrate how it works using a pedagogical example, and demonstrate its actual performance by applying it to large-scale modeling tasks of two real-world user-authentication systems.","PeriodicalId":322583,"journal":{"name":"ACM Transactions on Computer-Human Interaction (TOCHI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer-Human Interaction (TOCHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cognitive modeling tools have been widely used by researchers and practitioners to help design, evaluate, and study computer user interfaces (UIs). Despite their usefulness, large-scale modeling tasks can still be very challenging due to the amount of manual work needed. To address this scalability challenge, we propose CogTool+, a new cognitive modeling software framework developed on top of the well-known software tool CogTool. CogTool+ addresses the scalability problem by supporting the following key features: (1) a higher level of parameterization and automation; (2) algorithmic components; (3) interfaces for using external data; and (4) a clear separation of tasks, which allows programmers and psychologists to define reusable components (e.g., algorithmic modules and behavioral templates) that can be used by UI/UX researchers and designers without the need to understand the low-level implementation details of such components. CogTool+ also supports mixed cognitive models required for many large-scale modeling tasks and provides an offline analyzer of simulation results. In order to show how CogTool+ can reduce the human effort required for large-scale modeling, we illustrate how it works using a pedagogical example, and demonstrate its actual performance by applying it to large-scale modeling tasks of two real-world user-authentication systems.