处理口语人名识别中的跨语言方面

F. Stouten, J. Martens
{"title":"处理口语人名识别中的跨语言方面","authors":"F. Stouten, J. Martens","doi":"10.1109/ASRU.2007.4430149","DOIUrl":null,"url":null,"abstract":"The development of an automatic speech recognizer (ASR) that can accurately recognize spoken names belonging to a large lexicon, is still a big challenge. One of the bottlenecks is that many names contain elements of a foreign language origin, and native speakers can adopt very different pronunciations of these elements, ranging from completely nativized to completely foreignized pronunciations. In this paper we further develop a recently proposed method for improving the recognition of foreign proper names spoken by native speakers. The main idea is to combine the standard acoustic model scores with scores emerging from a phonologically inspired back-off model that was trained on native speech only. This means that the proposed method does not require the development of any foreign phoneme models on foreign speech data. By applying our method on a baseline Dutch recognizer (comprising Dutch acoustic models) we could reduce the name error rate for French and English names by a considerable amount.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dealing with cross-lingual aspects in spoken name recognition\",\"authors\":\"F. Stouten, J. Martens\",\"doi\":\"10.1109/ASRU.2007.4430149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of an automatic speech recognizer (ASR) that can accurately recognize spoken names belonging to a large lexicon, is still a big challenge. One of the bottlenecks is that many names contain elements of a foreign language origin, and native speakers can adopt very different pronunciations of these elements, ranging from completely nativized to completely foreignized pronunciations. In this paper we further develop a recently proposed method for improving the recognition of foreign proper names spoken by native speakers. The main idea is to combine the standard acoustic model scores with scores emerging from a phonologically inspired back-off model that was trained on native speech only. This means that the proposed method does not require the development of any foreign phoneme models on foreign speech data. By applying our method on a baseline Dutch recognizer (comprising Dutch acoustic models) we could reduce the name error rate for French and English names by a considerable amount.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自动语音识别器(ASR)的发展,可以准确地识别口语名称属于一个庞大的词典,仍然是一个巨大的挑战。其中一个瓶颈是,许多名字包含来自外语的元素,母语人士可以对这些元素采用非常不同的发音,从完全本土化到完全异化的发音。在本文中,我们进一步发展了最近提出的一种方法,以提高对母语人士所说的外国专有名称的识别。主要想法是将标准声学模型得分与仅在母语语音上训练的音系启发的后退模型得分结合起来。这意味着所提出的方法不需要在外来语数据上开发任何外来语位模型。通过将我们的方法应用于基线荷兰语识别器(包括荷兰语声学模型),我们可以大大降低法语和英语名称的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dealing with cross-lingual aspects in spoken name recognition
The development of an automatic speech recognizer (ASR) that can accurately recognize spoken names belonging to a large lexicon, is still a big challenge. One of the bottlenecks is that many names contain elements of a foreign language origin, and native speakers can adopt very different pronunciations of these elements, ranging from completely nativized to completely foreignized pronunciations. In this paper we further develop a recently proposed method for improving the recognition of foreign proper names spoken by native speakers. The main idea is to combine the standard acoustic model scores with scores emerging from a phonologically inspired back-off model that was trained on native speech only. This means that the proposed method does not require the development of any foreign phoneme models on foreign speech data. By applying our method on a baseline Dutch recognizer (comprising Dutch acoustic models) we could reduce the name error rate for French and English names by a considerable amount.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1