{"title":"雷达信号处理对深度学习分类的影响","authors":"Sean J. Kearney, S. Gurbuz","doi":"10.1109/RadarConf2351548.2023.10149612","DOIUrl":null,"url":null,"abstract":"As radar technology becomes more readily available to researchers and users, it is thus being explored how to better process this data for real-time implementations. To process this radar data, the short time Fourier transform (STFT) has been implemented to then find the micro-Doppler spectrogram. When computing the STFT, there are parameters which can be adjusted to alter the size of the resulting micro-Doppler spectrogram. In this work, these parameters were adjusted to find the optimal representation of micro-Doppler radar returns of human activities, which were recorded using a 77 GHz Frequency Modulated Continuous Wave (FMCW) millimeter wave radar. To determine these optimal combinations, the resulting micro-Doppler spectrograms were used to train and test a Convolutional Autoencoder (CAE). The t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-Nearest Neighbor Classification (kNN) were also utilized to find the nearest representations in a low-dimensional space of the spectrograms.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Radar Signal Processing on Deep Learning-based Classification\",\"authors\":\"Sean J. Kearney, S. Gurbuz\",\"doi\":\"10.1109/RadarConf2351548.2023.10149612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As radar technology becomes more readily available to researchers and users, it is thus being explored how to better process this data for real-time implementations. To process this radar data, the short time Fourier transform (STFT) has been implemented to then find the micro-Doppler spectrogram. When computing the STFT, there are parameters which can be adjusted to alter the size of the resulting micro-Doppler spectrogram. In this work, these parameters were adjusted to find the optimal representation of micro-Doppler radar returns of human activities, which were recorded using a 77 GHz Frequency Modulated Continuous Wave (FMCW) millimeter wave radar. To determine these optimal combinations, the resulting micro-Doppler spectrograms were used to train and test a Convolutional Autoencoder (CAE). The t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-Nearest Neighbor Classification (kNN) were also utilized to find the nearest representations in a low-dimensional space of the spectrograms.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Radar Signal Processing on Deep Learning-based Classification
As radar technology becomes more readily available to researchers and users, it is thus being explored how to better process this data for real-time implementations. To process this radar data, the short time Fourier transform (STFT) has been implemented to then find the micro-Doppler spectrogram. When computing the STFT, there are parameters which can be adjusted to alter the size of the resulting micro-Doppler spectrogram. In this work, these parameters were adjusted to find the optimal representation of micro-Doppler radar returns of human activities, which were recorded using a 77 GHz Frequency Modulated Continuous Wave (FMCW) millimeter wave radar. To determine these optimal combinations, the resulting micro-Doppler spectrograms were used to train and test a Convolutional Autoencoder (CAE). The t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-Nearest Neighbor Classification (kNN) were also utilized to find the nearest representations in a low-dimensional space of the spectrograms.