基于决策树的音视频和语言信息抑郁分类

Le Yang, D. Jiang, Lang He, Ercheng Pei, Meshia Cédric Oveneke, H. Sahli
{"title":"基于决策树的音视频和语言信息抑郁分类","authors":"Le Yang, D. Jiang, Lang He, Ercheng Pei, Meshia Cédric Oveneke, H. Sahli","doi":"10.1145/2988257.2988269","DOIUrl":null,"url":null,"abstract":"In order to improve the recognition accuracy of the Depression Classification Sub-Challenge (DCC) of the AVEC 2016, in this paper we propose a decision tree for depression classification. The decision tree is constructed according to the distribution of the multimodal prediction of PHQ-8 scores and participants' characteristics (PTSD/Depression Diagnostic, sleep-status, feeling and personality) obtained via the analysis of the transcript files of the participants. The proposed gender specific decision tree provides a way of fusing the upper level language information with the results obtained using low level audio and visual features. Experiments are carried out on the Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) database, results show that the proposed depression classification schemes obtain very promising results on the development set, with F1 score reaching 0.857 for class depressed and 0.964 for class not depressed. Despite of the over-fitting problem in training the models of predicting the PHQ-8 scores, the classification schemes still obtain satisfying performance on the test set. The F1 score reaches 0.571 for class depressed and 0.877 for class not depressed, with the average 0.724 which is higher than the baseline result 0.700.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"66 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Decision Tree Based Depression Classification from Audio Video and Language Information\",\"authors\":\"Le Yang, D. Jiang, Lang He, Ercheng Pei, Meshia Cédric Oveneke, H. Sahli\",\"doi\":\"10.1145/2988257.2988269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the recognition accuracy of the Depression Classification Sub-Challenge (DCC) of the AVEC 2016, in this paper we propose a decision tree for depression classification. The decision tree is constructed according to the distribution of the multimodal prediction of PHQ-8 scores and participants' characteristics (PTSD/Depression Diagnostic, sleep-status, feeling and personality) obtained via the analysis of the transcript files of the participants. The proposed gender specific decision tree provides a way of fusing the upper level language information with the results obtained using low level audio and visual features. Experiments are carried out on the Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) database, results show that the proposed depression classification schemes obtain very promising results on the development set, with F1 score reaching 0.857 for class depressed and 0.964 for class not depressed. Despite of the over-fitting problem in training the models of predicting the PHQ-8 scores, the classification schemes still obtain satisfying performance on the test set. The F1 score reaches 0.571 for class depressed and 0.877 for class not depressed, with the average 0.724 which is higher than the baseline result 0.700.\",\"PeriodicalId\":432793,\"journal\":{\"name\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"volume\":\"66 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2988257.2988269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

为了提高AVEC 2016抑郁症分类子挑战(DCC)的识别精度,本文提出了一种抑郁症分类决策树。根据PHQ-8分数的多模态预测与被试特征(PTSD/抑郁诊断、睡眠状态、感觉和人格)的分布,构建决策树。所提出的性别特定决策树提供了一种将上层语言信息与使用低级音频和视觉特征获得的结果融合的方法。在苦恼分析访谈语料-绿野仙踪(DAIC-WOZ)数据库上进行了实验,结果表明所提出的抑郁分类方案在开发集上取得了很好的效果,抑郁类的F1得分达到0.857,非抑郁类的F1得分达到0.964。尽管在训练PHQ-8分数预测模型时存在过拟合问题,但分类方案在测试集上仍然获得了令人满意的性能。抑郁班级的F1得分为0.571,未抑郁班级的F1得分为0.877,平均得分为0.724,高于基线结果0.700。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decision Tree Based Depression Classification from Audio Video and Language Information
In order to improve the recognition accuracy of the Depression Classification Sub-Challenge (DCC) of the AVEC 2016, in this paper we propose a decision tree for depression classification. The decision tree is constructed according to the distribution of the multimodal prediction of PHQ-8 scores and participants' characteristics (PTSD/Depression Diagnostic, sleep-status, feeling and personality) obtained via the analysis of the transcript files of the participants. The proposed gender specific decision tree provides a way of fusing the upper level language information with the results obtained using low level audio and visual features. Experiments are carried out on the Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) database, results show that the proposed depression classification schemes obtain very promising results on the development set, with F1 score reaching 0.857 for class depressed and 0.964 for class not depressed. Despite of the over-fitting problem in training the models of predicting the PHQ-8 scores, the classification schemes still obtain satisfying performance on the test set. The F1 score reaches 0.571 for class depressed and 0.877 for class not depressed, with the average 0.724 which is higher than the baseline result 0.700.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Depression using Vocal, Facial and Semantic Communication Cues Multimodal Emotion Recognition for AVEC 2016 Challenge Staircase Regression in OA RVM, Data Selection and Gender Dependency in AVEC 2016 Session details: Depression recognition Depression Assessment by Fusing High and Low Level Features from Audio, Video, and Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1