微米自动机处理器上的Brill标签

Keira Zhou, J. J. Fox, Ke Wang, Donald E. Brown, K. Skadron
{"title":"微米自动机处理器上的Brill标签","authors":"Keira Zhou, J. J. Fox, Ke Wang, Donald E. Brown, K. Skadron","doi":"10.1109/ICOSC.2015.7050812","DOIUrl":null,"url":null,"abstract":"Semantic analysis often uses a pipeline of Natural Language Processing (NLP) tools such as part-of-speech (POS) tagging. Brill tagging is a classic rule-based algorithm for POS tagging within NLP. However, implementation of the tagger is inherently slow on conventional Von Neumann architectures. In this paper, we accelerate the second stage of Brill tagging on the Micron Automata Processor, a new computing architecture that can perform massive pattern matching in parallel. The designed structure is tested with a subset of the Brown Corpus using 218 contextual rules. The results show a 38X speed-up for the second stage tagger implemented on a single AP chip, compared to a single thread implementation on CPU. This speed-up is linear with the number of rules, thus making large and/or complex rule sets computationally practical. This paper introduces the use of this new accelerator for computational linguistic tasks, particularly those that involve rule-based or pattern-matching approaches.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Brill tagging on the Micron Automata Processor\",\"authors\":\"Keira Zhou, J. J. Fox, Ke Wang, Donald E. Brown, K. Skadron\",\"doi\":\"10.1109/ICOSC.2015.7050812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic analysis often uses a pipeline of Natural Language Processing (NLP) tools such as part-of-speech (POS) tagging. Brill tagging is a classic rule-based algorithm for POS tagging within NLP. However, implementation of the tagger is inherently slow on conventional Von Neumann architectures. In this paper, we accelerate the second stage of Brill tagging on the Micron Automata Processor, a new computing architecture that can perform massive pattern matching in parallel. The designed structure is tested with a subset of the Brown Corpus using 218 contextual rules. The results show a 38X speed-up for the second stage tagger implemented on a single AP chip, compared to a single thread implementation on CPU. This speed-up is linear with the number of rules, thus making large and/or complex rule sets computationally practical. This paper introduces the use of this new accelerator for computational linguistic tasks, particularly those that involve rule-based or pattern-matching approaches.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

语义分析通常使用自然语言处理(NLP)工具的管道,例如词性标记(POS)。Brill标注是自然语言处理中一种经典的基于规则的词性标注算法。然而,在传统的冯·诺依曼架构上,标记器的实现本身就很慢。在本文中,我们在Micron Automata处理器上加速了Brill标记的第二阶段,这是一种可以并行执行大量模式匹配的新计算架构。设计的结构使用布朗语料库的一个子集使用218个上下文规则进行测试。结果表明,与CPU上的单线程实现相比,在单个AP芯片上实现的第二阶段标记器的速度提高了38倍。这种加速与规则的数量呈线性关系,从而使大型和/或复杂的规则集在计算上变得实用。本文介绍了这种新的加速器在计算语言任务中的使用,特别是那些涉及基于规则或模式匹配方法的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brill tagging on the Micron Automata Processor
Semantic analysis often uses a pipeline of Natural Language Processing (NLP) tools such as part-of-speech (POS) tagging. Brill tagging is a classic rule-based algorithm for POS tagging within NLP. However, implementation of the tagger is inherently slow on conventional Von Neumann architectures. In this paper, we accelerate the second stage of Brill tagging on the Micron Automata Processor, a new computing architecture that can perform massive pattern matching in parallel. The designed structure is tested with a subset of the Brown Corpus using 218 contextual rules. The results show a 38X speed-up for the second stage tagger implemented on a single AP chip, compared to a single thread implementation on CPU. This speed-up is linear with the number of rules, thus making large and/or complex rule sets computationally practical. This paper introduces the use of this new accelerator for computational linguistic tasks, particularly those that involve rule-based or pattern-matching approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NNB: An efficient nearest neighbor search method for hierarchical clustering on large datasets Aggregating financial services data without assumptions: A semantic data reference architecture Reducing search space for Web Service ranking using semantic logs and Semantic FP-Tree based association rule mining An approximation of betweenness centrality for Social Networks Performance analysis of Ensemble methods on Twitter sentiment analysis using NLP techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1