{"title":"增材制造中散热优化支持","authors":"Cunfu Wang, Xiaoping Qian","doi":"10.1115/detc2020-22198","DOIUrl":null,"url":null,"abstract":"\n The paper presents a formulation for support optimization to maximize heat dissipation in additive manufacturing. To simulate heat transfer from the part to the supports, a boundary-dependent heat flux is applied on the part/support interface. Since the density-based topology optimization does not involve explicit boundary, the heat flux is implicitly imposed through a domain integration of a Heaviside projected density gradient. As such, this formulation also supports simultaneous optimization of support and parts in additive manufacturing. Self-supporting supports are obtained by controlling the anisotropic thermal conductivity of the supports. Three different objective functions related to heat dissipation efficiency are investigated. Numerical examples are presented to demonstrate the validity and efficiency of the proposed approach.","PeriodicalId":164403,"journal":{"name":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimizing Support for Heat Dissipation in Additive Manufacturing\",\"authors\":\"Cunfu Wang, Xiaoping Qian\",\"doi\":\"10.1115/detc2020-22198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper presents a formulation for support optimization to maximize heat dissipation in additive manufacturing. To simulate heat transfer from the part to the supports, a boundary-dependent heat flux is applied on the part/support interface. Since the density-based topology optimization does not involve explicit boundary, the heat flux is implicitly imposed through a domain integration of a Heaviside projected density gradient. As such, this formulation also supports simultaneous optimization of support and parts in additive manufacturing. Self-supporting supports are obtained by controlling the anisotropic thermal conductivity of the supports. Three different objective functions related to heat dissipation efficiency are investigated. Numerical examples are presented to demonstrate the validity and efficiency of the proposed approach.\",\"PeriodicalId\":164403,\"journal\":{\"name\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Support for Heat Dissipation in Additive Manufacturing
The paper presents a formulation for support optimization to maximize heat dissipation in additive manufacturing. To simulate heat transfer from the part to the supports, a boundary-dependent heat flux is applied on the part/support interface. Since the density-based topology optimization does not involve explicit boundary, the heat flux is implicitly imposed through a domain integration of a Heaviside projected density gradient. As such, this formulation also supports simultaneous optimization of support and parts in additive manufacturing. Self-supporting supports are obtained by controlling the anisotropic thermal conductivity of the supports. Three different objective functions related to heat dissipation efficiency are investigated. Numerical examples are presented to demonstrate the validity and efficiency of the proposed approach.