通过分层随机学习识别人类活动

Sebastian Lühr, H. Bui, S. Venkatesh, G. West
{"title":"通过分层随机学习识别人类活动","authors":"Sebastian Lühr, H. Bui, S. Venkatesh, G. West","doi":"10.1109/PERCOM.2003.1192766","DOIUrl":null,"url":null,"abstract":"Seeking to extend the functional capability of the elderly, we explore the use of probabilistic methods to learn and recognise human activity in order to provide monitoring support. We propose a novel approach to learning the hierarchical structure of sequences of human actions through the application of the hierarchical hidden Markov model (HHMM). Experimental results are presented for learning and recognising sequences of typical activities in a home.","PeriodicalId":230787,"journal":{"name":"Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003).","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Recognition of human activity through hierarchical stochastic learning\",\"authors\":\"Sebastian Lühr, H. Bui, S. Venkatesh, G. West\",\"doi\":\"10.1109/PERCOM.2003.1192766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seeking to extend the functional capability of the elderly, we explore the use of probabilistic methods to learn and recognise human activity in order to provide monitoring support. We propose a novel approach to learning the hierarchical structure of sequences of human actions through the application of the hierarchical hidden Markov model (HHMM). Experimental results are presented for learning and recognising sequences of typical activities in a home.\",\"PeriodicalId\":230787,\"journal\":{\"name\":\"Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003).\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOM.2003.1192766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2003.1192766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

为了扩展老年人的功能能力,我们探索使用概率方法来学习和识别人类活动,以提供监测支持。我们提出了一种新的方法,通过应用层次隐马尔可夫模型(HHMM)来学习人类行为序列的层次结构。实验结果提出了学习和识别序列的典型活动在一个家庭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of human activity through hierarchical stochastic learning
Seeking to extend the functional capability of the elderly, we explore the use of probabilistic methods to learn and recognise human activity in order to provide monitoring support. We propose a novel approach to learning the hierarchical structure of sequences of human actions through the application of the hierarchical hidden Markov model (HHMM). Experimental results are presented for learning and recognising sequences of typical activities in a home.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location aware resource management in smart homes On security study of two distance vector routing protocols for mobile ad hoc networks Scalable home network interaction model based on mobile agents Self-adaptive leasing for jini Using semantic networks for knowledge representation in an intelligent environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1