用于HTTP自适应流的设备感知比特率阶梯结构

Minh Nguyen, Babak Taraghi, A. Bentaleb, Roger Zimmermann, C. Timmerer
{"title":"用于HTTP自适应流的设备感知比特率阶梯结构","authors":"Minh Nguyen, Babak Taraghi, A. Bentaleb, Roger Zimmermann, C. Timmerer","doi":"10.23919/CNSM55787.2022.9964669","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a CMCD-Aware per-Device bitrate LADder construction (CADLAD) that leverages the Common Media Client Data (CMCD) standard to address the above issues. CADLAD comprises components at both client and server sides. The client calculates the top bitrate (tb) — a CMCD parameter to indicate the highest bitrate that can be rendered at the client — and sends it to the server together with its device type and screen resolution. The server decides on a suitable bitrate ladder, whose maximum bitrate and resolution are based on CMCD parameters, to the client device with the purpose of providing maximum QoE while minimizing delivered data. CADLAD has two versions to work in Video on Demand (VoD) and live streaming scenarios. Our CADLAD is client agnostic; hence, it can work with any players and ABR algorithms at the client. The experimental results show that CADLAD is able to increase the QoE by 2.6x while saving 71% of delivered data, compared to an existing bitrate ladder of an available video dataset. We implement our idea within CAdViSE — an open-source testbed for reproducibility.","PeriodicalId":232521,"journal":{"name":"2022 18th International Conference on Network and Service Management (CNSM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CADLAD: Device-aware Bitrate Ladder Construction for HTTP Adaptive Streaming\",\"authors\":\"Minh Nguyen, Babak Taraghi, A. Bentaleb, Roger Zimmermann, C. Timmerer\",\"doi\":\"10.23919/CNSM55787.2022.9964669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a CMCD-Aware per-Device bitrate LADder construction (CADLAD) that leverages the Common Media Client Data (CMCD) standard to address the above issues. CADLAD comprises components at both client and server sides. The client calculates the top bitrate (tb) — a CMCD parameter to indicate the highest bitrate that can be rendered at the client — and sends it to the server together with its device type and screen resolution. The server decides on a suitable bitrate ladder, whose maximum bitrate and resolution are based on CMCD parameters, to the client device with the purpose of providing maximum QoE while minimizing delivered data. CADLAD has two versions to work in Video on Demand (VoD) and live streaming scenarios. Our CADLAD is client agnostic; hence, it can work with any players and ABR algorithms at the client. The experimental results show that CADLAD is able to increase the QoE by 2.6x while saving 71% of delivered data, compared to an existing bitrate ladder of an available video dataset. We implement our idea within CAdViSE — an open-source testbed for reproducibility.\",\"PeriodicalId\":232521,\"journal\":{\"name\":\"2022 18th International Conference on Network and Service Management (CNSM)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM55787.2022.9964669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM55787.2022.9964669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们介绍了一个CMCD感知的每设备比特率阶梯结构(CADLAD),它利用公共媒体客户端数据(CMCD)标准来解决上述问题。CADLAD包括客户端和服务器端的组件。客户端计算最高比特率(tb)——一个CMCD参数,用于指示客户端可以呈现的最高比特率——并将其与设备类型和屏幕分辨率一起发送给服务器。服务器决定一个合适的比特率阶梯,其最大比特率和分辨率是基于CMCD参数的,目的是提供最大的QoE,同时最小化交付的数据。CADLAD有两个版本,可用于视频点播(VoD)和直播场景。我们的CADLAD是客户不可知的;因此,它可以在客户端与任何播放器和ABR算法一起工作。实验结果表明,与现有的可用视频数据集的比特率阶梯相比,CADLAD能够将QoE提高2.6倍,同时节省71%的传输数据。我们在CAdViSE中实现了我们的想法——一个可重复性的开源测试平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CADLAD: Device-aware Bitrate Ladder Construction for HTTP Adaptive Streaming
In this paper, we introduce a CMCD-Aware per-Device bitrate LADder construction (CADLAD) that leverages the Common Media Client Data (CMCD) standard to address the above issues. CADLAD comprises components at both client and server sides. The client calculates the top bitrate (tb) — a CMCD parameter to indicate the highest bitrate that can be rendered at the client — and sends it to the server together with its device type and screen resolution. The server decides on a suitable bitrate ladder, whose maximum bitrate and resolution are based on CMCD parameters, to the client device with the purpose of providing maximum QoE while minimizing delivered data. CADLAD has two versions to work in Video on Demand (VoD) and live streaming scenarios. Our CADLAD is client agnostic; hence, it can work with any players and ABR algorithms at the client. The experimental results show that CADLAD is able to increase the QoE by 2.6x while saving 71% of delivered data, compared to an existing bitrate ladder of an available video dataset. We implement our idea within CAdViSE — an open-source testbed for reproducibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Function-as-a-Service Orchestration in Fog Computing Environments Intent-based Decentralized Orchestration for Green Energy-aware Provisioning of Fog-native Workflows HSFL: An Efficient Split Federated Learning Framework via Hierarchical Organization Network traffic classification based on periodic behavior detection VM Failure Prediction with Log Analysis using BERT-CNN Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1