估算热带湿润森林植被指数对叶面积指数敏感性的过渡函数参数

M. Kalacska, G. Sánchez-Azofeifa, B. Rivard, J. Calvo-Alvarado
{"title":"估算热带湿润森林植被指数对叶面积指数敏感性的过渡函数参数","authors":"M. Kalacska, G. Sánchez-Azofeifa, B. Rivard, J. Calvo-Alvarado","doi":"10.1109/WARSD.2003.1295189","DOIUrl":null,"url":null,"abstract":"A non-linear transition function (Lorentzian cumulative function) best represented the relationship between leaf area index (LAI) and spectral vegetation indices (SVI) calculated from a Landsat ETM+ image from a tropical moist forest. The three parameters of the function (transition height, center and half-width) describe the sensitivity of the index to a range of LAI values. From the SVIs tested, the Modified Single Ratio (MSR) had best sensitivity to LAI in this environment being sensitive to changes in LAI from 0.0-4.7.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of transition function parameters to evaluate the sensitivity of vegetation indices to leaf area index in a tropical moist forest\",\"authors\":\"M. Kalacska, G. Sánchez-Azofeifa, B. Rivard, J. Calvo-Alvarado\",\"doi\":\"10.1109/WARSD.2003.1295189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-linear transition function (Lorentzian cumulative function) best represented the relationship between leaf area index (LAI) and spectral vegetation indices (SVI) calculated from a Landsat ETM+ image from a tropical moist forest. The three parameters of the function (transition height, center and half-width) describe the sensitivity of the index to a range of LAI values. From the SVIs tested, the Modified Single Ratio (MSR) had best sensitivity to LAI in this environment being sensitive to changes in LAI from 0.0-4.7.\",\"PeriodicalId\":395735,\"journal\":{\"name\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARSD.2003.1295189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非线性过渡函数(Lorentzian cumulative function)最能表征热带湿润森林的叶面积指数(LAI)与光谱植被指数(SVI)之间的关系。函数的三个参数(过渡高度、中心和半宽度)描述了指数对LAI值范围的敏感性。从测试的svi来看,修正单一比率(MSR)在该环境下对LAI的敏感性最好,对LAI在0.0-4.7之间的变化敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of transition function parameters to evaluate the sensitivity of vegetation indices to leaf area index in a tropical moist forest
A non-linear transition function (Lorentzian cumulative function) best represented the relationship between leaf area index (LAI) and spectral vegetation indices (SVI) calculated from a Landsat ETM+ image from a tropical moist forest. The three parameters of the function (transition height, center and half-width) describe the sensitivity of the index to a range of LAI values. From the SVIs tested, the Modified Single Ratio (MSR) had best sensitivity to LAI in this environment being sensitive to changes in LAI from 0.0-4.7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A residual-based approach to classification of remote sensing images Operational segmentation and classification of SAR sea ice imagery The spectral similarity scale and its application to the classification of hyperspectral remote sensing data Further results on AMM for endmember induction Spatial/Spectral analysis of hyperspectral image data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1