人类牙齿的三维生物功能适应

A. Kishen, C. Lim, A. Asundi
{"title":"人类牙齿的三维生物功能适应","authors":"A. Kishen, C. Lim, A. Asundi","doi":"10.1117/12.446757","DOIUrl":null,"url":null,"abstract":"It is understood that once human tooth erupts into the oral cavity it models or adapts to the functional requirements imposed on it. In this study, experiments were conducted to evaluate the nature of dentine mineralization and mechanical property gradients using fluoroscopic X-ray imaging and instrumented micro-indentation techniques respectively. It was found that dentine adapts as a complex structure with significant gradients in its mineralization and elastic modulus. A significant relationship between the pattern of mineralization and the spatial gradients in mechanical properties was observed in the sagittal and cross-sections of the dentine. The natural gradation in the mechanical properties is explained by the two-dimensional and three- dimensional stress analysis conducted in anatomical scaled dento-osseous models using digital photoelasticity. This work highlights dentine structure as a biologically adapted Functionally Graded Material.","PeriodicalId":341144,"journal":{"name":"Complex Adaptive Structures","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional biofunctional adaptation in human tooth\",\"authors\":\"A. Kishen, C. Lim, A. Asundi\",\"doi\":\"10.1117/12.446757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is understood that once human tooth erupts into the oral cavity it models or adapts to the functional requirements imposed on it. In this study, experiments were conducted to evaluate the nature of dentine mineralization and mechanical property gradients using fluoroscopic X-ray imaging and instrumented micro-indentation techniques respectively. It was found that dentine adapts as a complex structure with significant gradients in its mineralization and elastic modulus. A significant relationship between the pattern of mineralization and the spatial gradients in mechanical properties was observed in the sagittal and cross-sections of the dentine. The natural gradation in the mechanical properties is explained by the two-dimensional and three- dimensional stress analysis conducted in anatomical scaled dento-osseous models using digital photoelasticity. This work highlights dentine structure as a biologically adapted Functionally Graded Material.\",\"PeriodicalId\":341144,\"journal\":{\"name\":\"Complex Adaptive Structures\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Adaptive Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.446757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Adaptive Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.446757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

据了解,一旦人类牙齿长出口腔,它就会模仿或适应强加给它的功能要求。在本研究中,分别使用x射线透视成像和仪器微压痕技术对牙本质矿化性质和力学性能梯度进行了评价。发现牙本质是一种复杂的结构,具有明显的矿化梯度和弹性模量。在牙本质矢状面和横截面上观察到矿化模式与力学性能的空间梯度之间存在显著的关系。利用数字光弹性技术对解剖比例牙骨模型进行了二维和三维应力分析,解释了力学性能的自然梯度。这项工作强调了牙本质结构是一种具有生物学适应性的功能梯度材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional biofunctional adaptation in human tooth
It is understood that once human tooth erupts into the oral cavity it models or adapts to the functional requirements imposed on it. In this study, experiments were conducted to evaluate the nature of dentine mineralization and mechanical property gradients using fluoroscopic X-ray imaging and instrumented micro-indentation techniques respectively. It was found that dentine adapts as a complex structure with significant gradients in its mineralization and elastic modulus. A significant relationship between the pattern of mineralization and the spatial gradients in mechanical properties was observed in the sagittal and cross-sections of the dentine. The natural gradation in the mechanical properties is explained by the two-dimensional and three- dimensional stress analysis conducted in anatomical scaled dento-osseous models using digital photoelasticity. This work highlights dentine structure as a biologically adapted Functionally Graded Material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approach to sequence DNA without tagging Designing mixed-metal supramolecular complexes Emergent system identification using particle swarm optimization Comments on the physical basis of the active materials concept Porphodimethenes/porphyrins: redox-switchable tetrapyrrolic macrocycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1