网页关键词的语言独立提取

H. Shah, R. Mariescu-Istodor, P. Fränti
{"title":"网页关键词的语言独立提取","authors":"H. Shah, R. Mariescu-Istodor, P. Fränti","doi":"10.1109/PIC53636.2021.9687047","DOIUrl":null,"url":null,"abstract":"We present a supervised method for keyword extraction from webpages. The method divides the HTML page into meaningful segments using document object model (DOM) and calculates a language independent feature vector for each word. Based on these, we generate a classification model that gives a likelihood for a word to be a keyword. The most likely words are then selected. We analyze the usefulness of the features on different datasets (news articles and service web pages) and compare different classification methods for the task. Results show that random forest performs best and provides up to 27.8 %- unit improvement compared to the best existing method.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WebRank: Language-Independent Extraction of Keywords from Webpages\",\"authors\":\"H. Shah, R. Mariescu-Istodor, P. Fränti\",\"doi\":\"10.1109/PIC53636.2021.9687047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a supervised method for keyword extraction from webpages. The method divides the HTML page into meaningful segments using document object model (DOM) and calculates a language independent feature vector for each word. Based on these, we generate a classification model that gives a likelihood for a word to be a keyword. The most likely words are then selected. We analyze the usefulness of the features on different datasets (news articles and service web pages) and compare different classification methods for the task. Results show that random forest performs best and provides up to 27.8 %- unit improvement compared to the best existing method.\",\"PeriodicalId\":297239,\"journal\":{\"name\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC53636.2021.9687047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于监督的网页关键词提取方法。该方法使用文档对象模型(DOM)将HTML页面划分为有意义的部分,并为每个单词计算独立于语言的特征向量。在此基础上,我们生成一个分类模型,该模型给出一个单词成为关键字的可能性。然后选择最可能的单词。我们分析了不同数据集(新闻文章和服务网页)上特征的有用性,并比较了任务的不同分类方法。结果表明,随机森林方法的性能最好,比现有的最佳方法提高了27.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WebRank: Language-Independent Extraction of Keywords from Webpages
We present a supervised method for keyword extraction from webpages. The method divides the HTML page into meaningful segments using document object model (DOM) and calculates a language independent feature vector for each word. Based on these, we generate a classification model that gives a likelihood for a word to be a keyword. The most likely words are then selected. We analyze the usefulness of the features on different datasets (news articles and service web pages) and compare different classification methods for the task. Results show that random forest performs best and provides up to 27.8 %- unit improvement compared to the best existing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of Learning Diagnosis and Resources Recommendation System Based on Knowledge Graph Classification of Masonry Bricks Using Convolutional Neural Networks – a Case Study in a University-Industry Collaboration Project Optimal Scale Combinations Selection for Incomplete Generalized Multi-scale Decision Systems Application of Improved YOLOV4 in Intelligent Driving Scenarios Research on Hierarchical Clustering Undersampling and Random Forest Fusion Classification Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1