基于卷积神经网络的MIMO空时分组码盲识别

Conglin Pan, Si Chen, Huijie Zhu, Wei Wu, Jiachuan Qian, Lijun Wang
{"title":"基于卷积神经网络的MIMO空时分组码盲识别","authors":"Conglin Pan, Si Chen, Huijie Zhu, Wei Wu, Jiachuan Qian, Lijun Wang","doi":"10.1145/3507971.3508009","DOIUrl":null,"url":null,"abstract":"Aiming at the blind identification of space-time block codes (STBC) in multiple input multiple output (MIMO) system, this paper proposes a new convolutional neural network (CNN-N) to realize the blind identification. Compared to traditional algorithms using statistical features of received signal, CNN-N can reduce the computation with a higher correct identification rate. Consist of multiple layers with special functions, CNN-N has good generalization ability in complex MIMO channels. The network in this paper can recognize 6 STBC codes include spatial multiplexing signal (SM) and some OSTBC codes. The simulation result shows that this new convolutional neural network can finish STBC identification with a high correct rate even in low SNR by consuming moderate amounts of time.","PeriodicalId":439757,"journal":{"name":"Proceedings of the 7th International Conference on Communication and Information Processing","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind identification of MIMO Space-Time Block Codes Based on Convolutional Neural Network\",\"authors\":\"Conglin Pan, Si Chen, Huijie Zhu, Wei Wu, Jiachuan Qian, Lijun Wang\",\"doi\":\"10.1145/3507971.3508009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the blind identification of space-time block codes (STBC) in multiple input multiple output (MIMO) system, this paper proposes a new convolutional neural network (CNN-N) to realize the blind identification. Compared to traditional algorithms using statistical features of received signal, CNN-N can reduce the computation with a higher correct identification rate. Consist of multiple layers with special functions, CNN-N has good generalization ability in complex MIMO channels. The network in this paper can recognize 6 STBC codes include spatial multiplexing signal (SM) and some OSTBC codes. The simulation result shows that this new convolutional neural network can finish STBC identification with a high correct rate even in low SNR by consuming moderate amounts of time.\",\"PeriodicalId\":439757,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Communication and Information Processing\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Communication and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3507971.3508009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507971.3508009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对多输入多输出(MIMO)系统中空时分组码(STBC)的盲识别问题,提出了一种新的卷积神经网络(CNN-N)来实现盲识别。与传统的利用接收信号统计特征的算法相比,CNN-N可以减少计算量,同时具有更高的正确识别率。CNN-N由多个具有特殊功能的层组成,在复杂MIMO信道中具有良好的泛化能力。本文所设计的网络可以识别6种STBC码,包括空间复用信号(SM)和部分OSTBC码。仿真结果表明,该卷积神经网络在较低信噪比的情况下也能以较高的正确率完成STBC的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind identification of MIMO Space-Time Block Codes Based on Convolutional Neural Network
Aiming at the blind identification of space-time block codes (STBC) in multiple input multiple output (MIMO) system, this paper proposes a new convolutional neural network (CNN-N) to realize the blind identification. Compared to traditional algorithms using statistical features of received signal, CNN-N can reduce the computation with a higher correct identification rate. Consist of multiple layers with special functions, CNN-N has good generalization ability in complex MIMO channels. The network in this paper can recognize 6 STBC codes include spatial multiplexing signal (SM) and some OSTBC codes. The simulation result shows that this new convolutional neural network can finish STBC identification with a high correct rate even in low SNR by consuming moderate amounts of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Path Planning of UAV Based on Pheromone Diffusion Ant Colony Algorithm Access Control Design Based on User Role Type in Telemedicine System Using Ethereum Blockchain Identifying Giant Clams Species using Machine Learning Techniques Blockchain based Distributed Oracle in Time Sensitive Scenario A Reliable Digital Watermarking Algorithm Based On DCT-SVD Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1