自动Propbank生成土耳其语

Koray Ak, O. T. Yildiz
{"title":"自动Propbank生成土耳其语","authors":"Koray Ak, O. T. Yildiz","doi":"10.26615/978-954-452-056-4_005","DOIUrl":null,"url":null,"abstract":"Semantic role labeling (SRL) is an important task for understanding natural languages, where the objective is to analyse propositions expressed by the verb and to identify each word that bears a semantic role. It provides an extensive dataset to enhance NLP applications such as information retrieval, machine translation, information extraction, and question answering. However, creating SRL models are difficult. Even in some languages, it is infeasible to create SRL models that have predicate-argument structure due to lack of linguistic resources. In this paper, we present our method to create an automatic Turkish PropBank by exploiting parallel data from the translated sentences of English PropBank. Experiments show that our method gives promising results.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Propbank Generation for Turkish\",\"authors\":\"Koray Ak, O. T. Yildiz\",\"doi\":\"10.26615/978-954-452-056-4_005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic role labeling (SRL) is an important task for understanding natural languages, where the objective is to analyse propositions expressed by the verb and to identify each word that bears a semantic role. It provides an extensive dataset to enhance NLP applications such as information retrieval, machine translation, information extraction, and question answering. However, creating SRL models are difficult. Even in some languages, it is infeasible to create SRL models that have predicate-argument structure due to lack of linguistic resources. In this paper, we present our method to create an automatic Turkish PropBank by exploiting parallel data from the translated sentences of English PropBank. Experiments show that our method gives promising results.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-056-4_005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语义角色标注(SRL)是理解自然语言的一项重要任务,其目的是分析动词所表达的命题,并识别每个承担语义角色的单词。它提供了一个广泛的数据集,以增强NLP应用,如信息检索,机器翻译,信息提取和问题回答。然而,创建SRL模型是困难的。即使在某些语言中,由于缺乏语言资源,创建具有谓词-参数结构的SRL模型也是不可行的。在本文中,我们提出了一种利用英语PropBank翻译句子中的并行数据来创建自动土耳其语PropBank的方法。实验表明,该方法具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Propbank Generation for Turkish
Semantic role labeling (SRL) is an important task for understanding natural languages, where the objective is to analyse propositions expressed by the verb and to identify each word that bears a semantic role. It provides an extensive dataset to enhance NLP applications such as information retrieval, machine translation, information extraction, and question answering. However, creating SRL models are difficult. Even in some languages, it is infeasible to create SRL models that have predicate-argument structure due to lack of linguistic resources. In this paper, we present our method to create an automatic Turkish PropBank by exploiting parallel data from the translated sentences of English PropBank. Experiments show that our method gives promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Landscape of Natural Language Processing Research AspectCSE: Sentence Embeddings for Aspect-Based Semantic Textual Similarity Using Contrastive Learning and Structured Knowledge Efficient Domain Adaptation of Sentence Embeddings Using Adapters Neural Machine Translation for Sinhala-English Code-Mixed Text A Domain-Independent Holistic Approach to Deception Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1