基于条件随机场的低碳能源枢纽调度实时价格弹性强化学习

Weiqi Hua, Minglei You, Hongjian Sun
{"title":"基于条件随机场的低碳能源枢纽调度实时价格弹性强化学习","authors":"Weiqi Hua, Minglei You, Hongjian Sun","doi":"10.1109/ICCChinaW.2019.8849941","DOIUrl":null,"url":null,"abstract":"Energy hub scheduling plays a vital role in optimally integrating multiple energy vectors, e.g., electricity and gas, to meet both heat and electricity demand. A scalable scheduling model is needed to adapt to various energy sources and operating conditions. This paper proposes a conditional random field (CRF) method to analyse the intrinsic characteristics of energy hub scheduling problems. Building on these characteristics, a reinforcement learning (RL) model is designed to strategically schedule power and natural gas exchanges as well as the energy dispatch of energy hub. Case studies are performed by using real-time digital simulator that enables dynamic interactions between scheduling decisions and operating conditions. Simulation results show that the CRF-based RL method can approach the theoretical optimal scheduling solution after 50 days training. Scheduling decisions are particularly more dependent on received price information during peak-demand period. The proposed method can reduce 9.76% of operating cost and 1.388 ton of carbon emissions per day, respectively.","PeriodicalId":252172,"journal":{"name":"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-Time Price Elasticity Reinforcement Learning for Low Carbon Energy Hub Scheduling Based on Conditional Random Field\",\"authors\":\"Weiqi Hua, Minglei You, Hongjian Sun\",\"doi\":\"10.1109/ICCChinaW.2019.8849941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy hub scheduling plays a vital role in optimally integrating multiple energy vectors, e.g., electricity and gas, to meet both heat and electricity demand. A scalable scheduling model is needed to adapt to various energy sources and operating conditions. This paper proposes a conditional random field (CRF) method to analyse the intrinsic characteristics of energy hub scheduling problems. Building on these characteristics, a reinforcement learning (RL) model is designed to strategically schedule power and natural gas exchanges as well as the energy dispatch of energy hub. Case studies are performed by using real-time digital simulator that enables dynamic interactions between scheduling decisions and operating conditions. Simulation results show that the CRF-based RL method can approach the theoretical optimal scheduling solution after 50 days training. Scheduling decisions are particularly more dependent on received price information during peak-demand period. The proposed method can reduce 9.76% of operating cost and 1.388 ton of carbon emissions per day, respectively.\",\"PeriodicalId\":252172,\"journal\":{\"name\":\"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChinaW.2019.8849941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChinaW.2019.8849941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

能源枢纽调度在优化整合多种能源载体(如电力和天然气)以满足热电需求方面发挥着至关重要的作用。需要一个可扩展的调度模型来适应不同的能源和运行条件。提出了一种条件随机场(CRF)方法来分析能源枢纽调度问题的内在特征。在此基础上,设计了一种强化学习(RL)模型,对电力和天然气交换以及能源枢纽的能源调度进行战略调度。通过使用实时数字模拟器进行案例研究,实现调度决策和操作条件之间的动态交互。仿真结果表明,经过50天的训练,基于crf的RL方法可以逼近理论最优调度解。在需求高峰期间,调度决策尤其依赖于接收到的价格信息。该方法每天可减少9.76%的运营成本和1.388吨的碳排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Price Elasticity Reinforcement Learning for Low Carbon Energy Hub Scheduling Based on Conditional Random Field
Energy hub scheduling plays a vital role in optimally integrating multiple energy vectors, e.g., electricity and gas, to meet both heat and electricity demand. A scalable scheduling model is needed to adapt to various energy sources and operating conditions. This paper proposes a conditional random field (CRF) method to analyse the intrinsic characteristics of energy hub scheduling problems. Building on these characteristics, a reinforcement learning (RL) model is designed to strategically schedule power and natural gas exchanges as well as the energy dispatch of energy hub. Case studies are performed by using real-time digital simulator that enables dynamic interactions between scheduling decisions and operating conditions. Simulation results show that the CRF-based RL method can approach the theoretical optimal scheduling solution after 50 days training. Scheduling decisions are particularly more dependent on received price information during peak-demand period. The proposed method can reduce 9.76% of operating cost and 1.388 ton of carbon emissions per day, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space Propagation Model for Wireless Power Transfer System of Dual Transmitter Signal Detection for Batteryless Backscatter Systems with Multiple-Antenna Tags Research on wireless sensor network location based on Improve Pigeon-inspired optimization A novel spinal codes based on chaotic Kent mapping Spectrum usage model for smart spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1