{"title":"基于条件随机场的低碳能源枢纽调度实时价格弹性强化学习","authors":"Weiqi Hua, Minglei You, Hongjian Sun","doi":"10.1109/ICCChinaW.2019.8849941","DOIUrl":null,"url":null,"abstract":"Energy hub scheduling plays a vital role in optimally integrating multiple energy vectors, e.g., electricity and gas, to meet both heat and electricity demand. A scalable scheduling model is needed to adapt to various energy sources and operating conditions. This paper proposes a conditional random field (CRF) method to analyse the intrinsic characteristics of energy hub scheduling problems. Building on these characteristics, a reinforcement learning (RL) model is designed to strategically schedule power and natural gas exchanges as well as the energy dispatch of energy hub. Case studies are performed by using real-time digital simulator that enables dynamic interactions between scheduling decisions and operating conditions. Simulation results show that the CRF-based RL method can approach the theoretical optimal scheduling solution after 50 days training. Scheduling decisions are particularly more dependent on received price information during peak-demand period. The proposed method can reduce 9.76% of operating cost and 1.388 ton of carbon emissions per day, respectively.","PeriodicalId":252172,"journal":{"name":"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-Time Price Elasticity Reinforcement Learning for Low Carbon Energy Hub Scheduling Based on Conditional Random Field\",\"authors\":\"Weiqi Hua, Minglei You, Hongjian Sun\",\"doi\":\"10.1109/ICCChinaW.2019.8849941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy hub scheduling plays a vital role in optimally integrating multiple energy vectors, e.g., electricity and gas, to meet both heat and electricity demand. A scalable scheduling model is needed to adapt to various energy sources and operating conditions. This paper proposes a conditional random field (CRF) method to analyse the intrinsic characteristics of energy hub scheduling problems. Building on these characteristics, a reinforcement learning (RL) model is designed to strategically schedule power and natural gas exchanges as well as the energy dispatch of energy hub. Case studies are performed by using real-time digital simulator that enables dynamic interactions between scheduling decisions and operating conditions. Simulation results show that the CRF-based RL method can approach the theoretical optimal scheduling solution after 50 days training. Scheduling decisions are particularly more dependent on received price information during peak-demand period. The proposed method can reduce 9.76% of operating cost and 1.388 ton of carbon emissions per day, respectively.\",\"PeriodicalId\":252172,\"journal\":{\"name\":\"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChinaW.2019.8849941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChinaW.2019.8849941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Price Elasticity Reinforcement Learning for Low Carbon Energy Hub Scheduling Based on Conditional Random Field
Energy hub scheduling plays a vital role in optimally integrating multiple energy vectors, e.g., electricity and gas, to meet both heat and electricity demand. A scalable scheduling model is needed to adapt to various energy sources and operating conditions. This paper proposes a conditional random field (CRF) method to analyse the intrinsic characteristics of energy hub scheduling problems. Building on these characteristics, a reinforcement learning (RL) model is designed to strategically schedule power and natural gas exchanges as well as the energy dispatch of energy hub. Case studies are performed by using real-time digital simulator that enables dynamic interactions between scheduling decisions and operating conditions. Simulation results show that the CRF-based RL method can approach the theoretical optimal scheduling solution after 50 days training. Scheduling decisions are particularly more dependent on received price information during peak-demand period. The proposed method can reduce 9.76% of operating cost and 1.388 ton of carbon emissions per day, respectively.