印尼Twitter账户的恶意账户检测

Latifah Alhaura, I. Budi
{"title":"印尼Twitter账户的恶意账户检测","authors":"Latifah Alhaura, I. Budi","doi":"10.1109/IC2IE50715.2020.9274682","DOIUrl":null,"url":null,"abstract":"The rapid growth of social networks indeed triggers an increase in malicious activities, including the spread of false information, the creation of fake accounts, spamming, and malware distribution. However, developing a detection system that can identify accounts precisely becomes quite challenging. In this paper, we present a study related to the detection of malicious accounts on Twitter users from Indonesia. Our study objective is to propose a simple feature set to detect malicious accounts using only a few metadata and the tweet content itself from Twitter. We divided the classification level into three: account level classification, tweet level classification, and combination of account and tweet level classification. To get the classification results, we applied some popular machine learning algorithms such as Random Forest, Decision Tree, AdaBoost Classifier, Neural Network, and Logistic Regression to each classification level. The results show that Random Forest achieved high classification accuracy (AUC >80%) in each classification level using our proposed feature set.","PeriodicalId":211983,"journal":{"name":"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Malicious Account Detection on Indonesian Twitter Account\",\"authors\":\"Latifah Alhaura, I. Budi\",\"doi\":\"10.1109/IC2IE50715.2020.9274682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of social networks indeed triggers an increase in malicious activities, including the spread of false information, the creation of fake accounts, spamming, and malware distribution. However, developing a detection system that can identify accounts precisely becomes quite challenging. In this paper, we present a study related to the detection of malicious accounts on Twitter users from Indonesia. Our study objective is to propose a simple feature set to detect malicious accounts using only a few metadata and the tweet content itself from Twitter. We divided the classification level into three: account level classification, tweet level classification, and combination of account and tweet level classification. To get the classification results, we applied some popular machine learning algorithms such as Random Forest, Decision Tree, AdaBoost Classifier, Neural Network, and Logistic Regression to each classification level. The results show that Random Forest achieved high classification accuracy (AUC >80%) in each classification level using our proposed feature set.\",\"PeriodicalId\":211983,\"journal\":{\"name\":\"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2IE50715.2020.9274682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2IE50715.2020.9274682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

社交网络的快速发展确实引发了恶意活动的增加,包括虚假信息的传播、虚假账户的创建、垃圾邮件和恶意软件的分发。然而,开发一种能够准确识别账户的检测系统变得相当具有挑战性。在本文中,我们提出了一项有关检测来自印度尼西亚的Twitter用户的恶意帐户的研究。我们的研究目标是提出一个简单的功能集,仅使用少量元数据和Twitter的tweet内容本身来检测恶意帐户。我们将分类级别分为三类:账户级分类、推文级分类、账户与推文级结合分类。为了得到分类结果,我们将随机森林、决策树、AdaBoost分类器、神经网络和逻辑回归等一些流行的机器学习算法应用于每个分类层次。结果表明,使用我们提出的特征集,随机森林在每个分类级别上都取得了较高的分类准确率(AUC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Malicious Account Detection on Indonesian Twitter Account
The rapid growth of social networks indeed triggers an increase in malicious activities, including the spread of false information, the creation of fake accounts, spamming, and malware distribution. However, developing a detection system that can identify accounts precisely becomes quite challenging. In this paper, we present a study related to the detection of malicious accounts on Twitter users from Indonesia. Our study objective is to propose a simple feature set to detect malicious accounts using only a few metadata and the tweet content itself from Twitter. We divided the classification level into three: account level classification, tweet level classification, and combination of account and tweet level classification. To get the classification results, we applied some popular machine learning algorithms such as Random Forest, Decision Tree, AdaBoost Classifier, Neural Network, and Logistic Regression to each classification level. The results show that Random Forest achieved high classification accuracy (AUC >80%) in each classification level using our proposed feature set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile-Based Requirement Challenges of Government Outsourcing Project: A Case Study Investigation of Job Satisfaction and Worker Performance on Digital Business Company IC2IE 2020 Index Wind Speed Forecasting toward El Nino Factors Using Recurrent Neural Networks Thyroid Nodules Stratification Based on Orientation Characteristics Using Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1