{"title":"基于增强双对比聚合学习的无监督可见-红外人再识别","authors":"Bin Yang, Mang Ye, Jun Chen, Zesen Wu","doi":"10.1145/3503161.3548198","DOIUrl":null,"url":null,"abstract":"Visible infrared person re-identification (VI-ReID) aims at searching out the corresponding infrared (visible) images from a gallery set captured by other spectrum cameras. Recent works mainly focus on supervised VI-ReID methods that require plenty of cross-modality (visible-infrared) identity labels which are more expensive than the annotations in single-modality person ReID. For the unsupervised learning visible infrared re-identification (USL-VI-ReID), the large cross-modality discrepancies lead to difficulties in generating reliable cross-modality labels and learning modality-invariant features without any annotations. To address this problem, we propose a novel Augmented Dual-Contrastive Aggregation (ADCA) learning framework. Specifically, a dual-path contrastive learning framework with two modality-specific memories is proposed to learn the intra-modality person representation. To associate positive cross-modality identities, we design a cross-modality memory aggregation module with count priority to select highly associated positive samples, and aggregate their corresponding memory features at the cluster level, ensuring that the optimization is explicitly concentrated on the modality-irrelevant perspective. Extensive experiments demonstrate that our proposed ADCA significantly outperforms existing unsupervised methods under various settings, and even surpasses some supervised counterparts, facilitating VI-ReID to real-world deployment. Code is available at https://github.com/yangbincv/ADCA.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Augmented Dual-Contrastive Aggregation Learning for Unsupervised Visible-Infrared Person Re-Identification\",\"authors\":\"Bin Yang, Mang Ye, Jun Chen, Zesen Wu\",\"doi\":\"10.1145/3503161.3548198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible infrared person re-identification (VI-ReID) aims at searching out the corresponding infrared (visible) images from a gallery set captured by other spectrum cameras. Recent works mainly focus on supervised VI-ReID methods that require plenty of cross-modality (visible-infrared) identity labels which are more expensive than the annotations in single-modality person ReID. For the unsupervised learning visible infrared re-identification (USL-VI-ReID), the large cross-modality discrepancies lead to difficulties in generating reliable cross-modality labels and learning modality-invariant features without any annotations. To address this problem, we propose a novel Augmented Dual-Contrastive Aggregation (ADCA) learning framework. Specifically, a dual-path contrastive learning framework with two modality-specific memories is proposed to learn the intra-modality person representation. To associate positive cross-modality identities, we design a cross-modality memory aggregation module with count priority to select highly associated positive samples, and aggregate their corresponding memory features at the cluster level, ensuring that the optimization is explicitly concentrated on the modality-irrelevant perspective. Extensive experiments demonstrate that our proposed ADCA significantly outperforms existing unsupervised methods under various settings, and even surpasses some supervised counterparts, facilitating VI-ReID to real-world deployment. Code is available at https://github.com/yangbincv/ADCA.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Augmented Dual-Contrastive Aggregation Learning for Unsupervised Visible-Infrared Person Re-Identification
Visible infrared person re-identification (VI-ReID) aims at searching out the corresponding infrared (visible) images from a gallery set captured by other spectrum cameras. Recent works mainly focus on supervised VI-ReID methods that require plenty of cross-modality (visible-infrared) identity labels which are more expensive than the annotations in single-modality person ReID. For the unsupervised learning visible infrared re-identification (USL-VI-ReID), the large cross-modality discrepancies lead to difficulties in generating reliable cross-modality labels and learning modality-invariant features without any annotations. To address this problem, we propose a novel Augmented Dual-Contrastive Aggregation (ADCA) learning framework. Specifically, a dual-path contrastive learning framework with two modality-specific memories is proposed to learn the intra-modality person representation. To associate positive cross-modality identities, we design a cross-modality memory aggregation module with count priority to select highly associated positive samples, and aggregate their corresponding memory features at the cluster level, ensuring that the optimization is explicitly concentrated on the modality-irrelevant perspective. Extensive experiments demonstrate that our proposed ADCA significantly outperforms existing unsupervised methods under various settings, and even surpasses some supervised counterparts, facilitating VI-ReID to real-world deployment. Code is available at https://github.com/yangbincv/ADCA.