Md. Asfak-Ur-Rahman, Mohammed Rokibul Alam Kotwal, Foyzul Hassan, S. Ahmmed, M. N. Huda
{"title":"孟加拉ASR的性别效应规范化","authors":"Md. Asfak-Ur-Rahman, Mohammed Rokibul Alam Kotwal, Foyzul Hassan, S. Ahmmed, M. N. Huda","doi":"10.1109/ICCITECHN.2012.6509701","DOIUrl":null,"url":null,"abstract":"This paper presents a Bangla (widely used as Bengali) automatic speech recognition system (ASR) by suppressing gender effects. Gender characteristic plays an important role on the performance of ASR. If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In the proposed method, we have designed a new ASR incorporating the Local Features (LFs) instead of standard mel frequency cepstral coefficients (MFCCs) as an acoustic feature for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In the experiments on Bangla speech database prepared by us, the proposed system has achieved a significant improvement of word correct rates (WCRs), word accuracies (WAs) and sentence correct rates (SCRs) in comparison with the method that incorporates Standard MFCCs.","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gender effect cannonicalization for Bangla ASR\",\"authors\":\"Md. Asfak-Ur-Rahman, Mohammed Rokibul Alam Kotwal, Foyzul Hassan, S. Ahmmed, M. N. Huda\",\"doi\":\"10.1109/ICCITECHN.2012.6509701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Bangla (widely used as Bengali) automatic speech recognition system (ASR) by suppressing gender effects. Gender characteristic plays an important role on the performance of ASR. If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In the proposed method, we have designed a new ASR incorporating the Local Features (LFs) instead of standard mel frequency cepstral coefficients (MFCCs) as an acoustic feature for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In the experiments on Bangla speech database prepared by us, the proposed system has achieved a significant improvement of word correct rates (WCRs), word accuracies (WAs) and sentence correct rates (SCRs) in comparison with the method that incorporates Standard MFCCs.\",\"PeriodicalId\":127060,\"journal\":{\"name\":\"2012 15th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 15th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2012.6509701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a Bangla (widely used as Bengali) automatic speech recognition system (ASR) by suppressing gender effects. Gender characteristic plays an important role on the performance of ASR. If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In the proposed method, we have designed a new ASR incorporating the Local Features (LFs) instead of standard mel frequency cepstral coefficients (MFCCs) as an acoustic feature for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In the experiments on Bangla speech database prepared by us, the proposed system has achieved a significant improvement of word correct rates (WCRs), word accuracies (WAs) and sentence correct rates (SCRs) in comparison with the method that incorporates Standard MFCCs.