Ming Feng, Yin Wang, Kele Xu, Huaimin Wang, Bo Ding
{"title":"利用U-Net和基于形状一致性的正则化器改进超声舌形轮廓提取","authors":"Ming Feng, Yin Wang, Kele Xu, Huaimin Wang, Bo Ding","doi":"10.1109/ICASSP39728.2021.9414420","DOIUrl":null,"url":null,"abstract":"B-mode ultrasound tongue imaging is widely used to visualize the tongue motion, due to its appearing properties. Extracting the tongue surface contour in the B-mode ultrasound image is still a challenge, while it is a prerequisite for further quantitative analysis. Recently, deep learning-based approach has been adopted in this task. However, the standard deep models fail to address faint contour when the ultrasound wave goes parallel to the tongue surface. To address the faint or missing contours in the sequence, we explore the shape consistency-based regularizer, which can take sequential information into account. By incorporating the regularizer, the deep model not only can extract frame-specific contours, but also can enforce the similarity between the contours extracted from adjacent frames. Extensive experiments are conducted both on the synthetic and real ultrasound tongue imaging dataset and the results demonstrate the effectiveness of proposed method. To better promote the research in this field, we have released our code at1.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving Ultrasound Tongue Contour Extraction Using U-Net and Shape Consistency-Based Regularizer\",\"authors\":\"Ming Feng, Yin Wang, Kele Xu, Huaimin Wang, Bo Ding\",\"doi\":\"10.1109/ICASSP39728.2021.9414420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"B-mode ultrasound tongue imaging is widely used to visualize the tongue motion, due to its appearing properties. Extracting the tongue surface contour in the B-mode ultrasound image is still a challenge, while it is a prerequisite for further quantitative analysis. Recently, deep learning-based approach has been adopted in this task. However, the standard deep models fail to address faint contour when the ultrasound wave goes parallel to the tongue surface. To address the faint or missing contours in the sequence, we explore the shape consistency-based regularizer, which can take sequential information into account. By incorporating the regularizer, the deep model not only can extract frame-specific contours, but also can enforce the similarity between the contours extracted from adjacent frames. Extensive experiments are conducted both on the synthetic and real ultrasound tongue imaging dataset and the results demonstrate the effectiveness of proposed method. To better promote the research in this field, we have released our code at1.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9414420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Ultrasound Tongue Contour Extraction Using U-Net and Shape Consistency-Based Regularizer
B-mode ultrasound tongue imaging is widely used to visualize the tongue motion, due to its appearing properties. Extracting the tongue surface contour in the B-mode ultrasound image is still a challenge, while it is a prerequisite for further quantitative analysis. Recently, deep learning-based approach has been adopted in this task. However, the standard deep models fail to address faint contour when the ultrasound wave goes parallel to the tongue surface. To address the faint or missing contours in the sequence, we explore the shape consistency-based regularizer, which can take sequential information into account. By incorporating the regularizer, the deep model not only can extract frame-specific contours, but also can enforce the similarity between the contours extracted from adjacent frames. Extensive experiments are conducted both on the synthetic and real ultrasound tongue imaging dataset and the results demonstrate the effectiveness of proposed method. To better promote the research in this field, we have released our code at1.