面向人类活动识别的多用户可穿戴边缘人工智能系统设计

M. C. Silva, A. G. Bianchi, R. A. R. Oliveira, S. Ribeiro
{"title":"面向人类活动识别的多用户可穿戴边缘人工智能系统设计","authors":"M. C. Silva, A. G. Bianchi, R. A. R. Oliveira, S. Ribeiro","doi":"10.1109/SBESC56799.2022.9964915","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition (HAR) using artificial intelligence has a broad range of applications. These applications reach a set of disciplines and areas as home activity monitoring, sports, traffic, and healthcare. Using Edge Computing as a tool to enhance is a recent but promising research front. In this work, we propose an architecture for an Edge AI system based on wearable devices. We validate aspects such as the algorithm and functioning based on an edge computing system. Our research displays that the developed system is capable of recognizing 18 different activities with 94% global average precision. Furthermore, it is suitable for usage in both mobile edge computing and cloudlets perspectives.","PeriodicalId":130479,"journal":{"name":"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a Multiple-User Wearable Edge AI system towards Human Activity Recognition\",\"authors\":\"M. C. Silva, A. G. Bianchi, R. A. R. Oliveira, S. Ribeiro\",\"doi\":\"10.1109/SBESC56799.2022.9964915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Activity Recognition (HAR) using artificial intelligence has a broad range of applications. These applications reach a set of disciplines and areas as home activity monitoring, sports, traffic, and healthcare. Using Edge Computing as a tool to enhance is a recent but promising research front. In this work, we propose an architecture for an Edge AI system based on wearable devices. We validate aspects such as the algorithm and functioning based on an edge computing system. Our research displays that the developed system is capable of recognizing 18 different activities with 94% global average precision. Furthermore, it is suitable for usage in both mobile edge computing and cloudlets perspectives.\",\"PeriodicalId\":130479,\"journal\":{\"name\":\"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBESC56799.2022.9964915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBESC56799.2022.9964915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于人工智能的人类活动识别(HAR)具有广泛的应用前景。这些应用程序涉及一系列学科和领域,如家庭活动监控、体育、交通和医疗保健。使用边缘计算作为增强工具是最近但有前途的研究前沿。在这项工作中,我们提出了一种基于可穿戴设备的边缘人工智能系统架构。我们验证了基于边缘计算系统的算法和功能等方面。我们的研究表明,开发的系统能够识别18种不同的活动,全球平均精度为94%。此外,它适用于移动边缘计算和cloudlets透视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing a Multiple-User Wearable Edge AI system towards Human Activity Recognition
Human Activity Recognition (HAR) using artificial intelligence has a broad range of applications. These applications reach a set of disciplines and areas as home activity monitoring, sports, traffic, and healthcare. Using Edge Computing as a tool to enhance is a recent but promising research front. In this work, we propose an architecture for an Edge AI system based on wearable devices. We validate aspects such as the algorithm and functioning based on an edge computing system. Our research displays that the developed system is capable of recognizing 18 different activities with 94% global average precision. Furthermore, it is suitable for usage in both mobile edge computing and cloudlets perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Learning using Consensus on Edge AI Integrating Autonomous Vehicle Simulation Tools using SmartData Trusted Monitor: TEE-Based System Monitoring Possible risks with EVT-based timing analysis: an experimental study on a multi-core platform Data-driven Anomaly Detection of Engine Knock based on Automotive ECU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1