软件可靠性预测建模:参数化与非参数化建模的比较

Ankur Choudhary, A. Baghel, O. Sangwan
{"title":"软件可靠性预测建模:参数化与非参数化建模的比较","authors":"Ankur Choudhary, A. Baghel, O. Sangwan","doi":"10.1109/CONFLUENCE.2016.7508198","DOIUrl":null,"url":null,"abstract":"Reliable softwares are the need of modern digital era. Failure nonlinearity makes software reliability a complicated task. Over past decades, many researchers have contributed many parametric / non parametric software reliability growth models and discussed their assumptions, applicability and predictability. It concluded that traditional parametric software reliability models have many shortcomings related to their unrealistic assumptions, environment-dependent applicability, and questionable predictability. In contrast to parametric software reliability growth models, the non-parametric software reliability growth models which use machine learning techniques or time series modeling have been proposed by researchers. This paper evaluates and compares the accuracy of 2 parametric and 2 non parametric software reliability growth models on 3 real-life data sets for software failures.","PeriodicalId":299044,"journal":{"name":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Software reliability prediction modeling: A comparison of parametric and non-parametric modeling\",\"authors\":\"Ankur Choudhary, A. Baghel, O. Sangwan\",\"doi\":\"10.1109/CONFLUENCE.2016.7508198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable softwares are the need of modern digital era. Failure nonlinearity makes software reliability a complicated task. Over past decades, many researchers have contributed many parametric / non parametric software reliability growth models and discussed their assumptions, applicability and predictability. It concluded that traditional parametric software reliability models have many shortcomings related to their unrealistic assumptions, environment-dependent applicability, and questionable predictability. In contrast to parametric software reliability growth models, the non-parametric software reliability growth models which use machine learning techniques or time series modeling have been proposed by researchers. This paper evaluates and compares the accuracy of 2 parametric and 2 non parametric software reliability growth models on 3 real-life data sets for software failures.\",\"PeriodicalId\":299044,\"journal\":{\"name\":\"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2016.7508198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2016.7508198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

可靠的软件是现代数字时代的需要。故障非线性使软件可靠性成为一项复杂的任务。在过去的几十年里,许多研究者提出了许多参数/非参数软件可靠性增长模型,并讨论了它们的假设、适用性和可预测性。它的结论是,传统的参数化软件可靠性模型有许多缺点,这些缺点与它们不切实际的假设、依赖于环境的适用性和可疑的可预测性有关。与参数化软件可靠性增长模型相比,研究人员提出了利用机器学习技术或时间序列建模的非参数化软件可靠性增长模型。本文在3个实际软件故障数据集上,对2个参数和2个非参数软件可靠性增长模型的准确性进行了评价和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software reliability prediction modeling: A comparison of parametric and non-parametric modeling
Reliable softwares are the need of modern digital era. Failure nonlinearity makes software reliability a complicated task. Over past decades, many researchers have contributed many parametric / non parametric software reliability growth models and discussed their assumptions, applicability and predictability. It concluded that traditional parametric software reliability models have many shortcomings related to their unrealistic assumptions, environment-dependent applicability, and questionable predictability. In contrast to parametric software reliability growth models, the non-parametric software reliability growth models which use machine learning techniques or time series modeling have been proposed by researchers. This paper evaluates and compares the accuracy of 2 parametric and 2 non parametric software reliability growth models on 3 real-life data sets for software failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big Data capabilities and readiness of South African retail organisations Heuristic model to improve Feature Selection based on Machine Learning in Data Mining Image processing based degraded camera captured document enhancement for improved OCR accuracy Development of IoT based smart security and monitoring devices for agriculture A comprehensive study on Facial Expressions Recognition Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1