基于有限域结构变化的抗侧信道攻击AES设计

P. Shvartsman, Xinmiao Zhang
{"title":"基于有限域结构变化的抗侧信道攻击AES设计","authors":"P. Shvartsman, Xinmiao Zhang","doi":"10.1109/SiPS47522.2019.9020535","DOIUrl":null,"url":null,"abstract":"The Advanced Encryption Standard (AES) is the current standard for symmetric key cipher and is algorithmically secure. Side channel attacks that target power consumption can reveal the secret key in AES implementations. Masking data with random variables is one of the main methods used to thwart power analysis attacks. Data can be masked with multiple random variables to prevent higher-order attacks at the cost of a large increase in area. A novel masking scheme for AES resistant to second-order attacks is proposed. Instead of using an additional mask, variation in finite field construction is exploited to increase resistance to second-order attacks. As a result, the area requirement is reduced. For an example AES encryptor, the proposed design is 12% smaller compared to the previous best design, with a very small drop in achievable security level.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Side Channel Attack Resistant AES Design Based on Finite Field Construction Variation\",\"authors\":\"P. Shvartsman, Xinmiao Zhang\",\"doi\":\"10.1109/SiPS47522.2019.9020535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Advanced Encryption Standard (AES) is the current standard for symmetric key cipher and is algorithmically secure. Side channel attacks that target power consumption can reveal the secret key in AES implementations. Masking data with random variables is one of the main methods used to thwart power analysis attacks. Data can be masked with multiple random variables to prevent higher-order attacks at the cost of a large increase in area. A novel masking scheme for AES resistant to second-order attacks is proposed. Instead of using an additional mask, variation in finite field construction is exploited to increase resistance to second-order attacks. As a result, the area requirement is reduced. For an example AES encryptor, the proposed design is 12% smaller compared to the previous best design, with a very small drop in achievable security level.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高级加密标准AES (Advanced Encryption Standard)是目前对称密钥密码的标准,具有算法安全性。以功耗为目标的侧信道攻击可以泄露AES实现中的密钥。用随机变量屏蔽数据是用来阻止功率分析攻击的主要方法之一。数据可以用多个随机变量来掩盖,以防止高阶攻击,代价是面积的大幅增加。提出了一种新的AES抗二阶攻击掩蔽方案。而不是使用一个额外的掩码,在有限域结构的变化被利用来增加抵抗二阶攻击。因此,减少了对面积的要求。以AES加密器为例,提议的设计比以前的最佳设计小12%,可实现的安全级别下降很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Side Channel Attack Resistant AES Design Based on Finite Field Construction Variation
The Advanced Encryption Standard (AES) is the current standard for symmetric key cipher and is algorithmically secure. Side channel attacks that target power consumption can reveal the secret key in AES implementations. Masking data with random variables is one of the main methods used to thwart power analysis attacks. Data can be masked with multiple random variables to prevent higher-order attacks at the cost of a large increase in area. A novel masking scheme for AES resistant to second-order attacks is proposed. Instead of using an additional mask, variation in finite field construction is exploited to increase resistance to second-order attacks. As a result, the area requirement is reduced. For an example AES encryptor, the proposed design is 12% smaller compared to the previous best design, with a very small drop in achievable security level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Reduction through Experience Classification f or Deep Reinforcement Learning with Prioritized Experience Replay Learning to Design Constellation for AWGN Channel Using Auto-Encoders SIR Beam Selector for Amazon Echo Devices Audio Front-End AVX-512 Based Software Decoding for 5G LDPC Codes Pipelined Implementations for Belief Propagation Polar Decoder: From Formula to Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1