Arman Iranfar, S. Shahsavani, M. Kamal, A. Afzali-Kusha
{"title":"基于启发式机器学习的异构mpsoc功率和热管理算法","authors":"Arman Iranfar, S. Shahsavani, M. Kamal, A. Afzali-Kusha","doi":"10.1109/ISLPED.2015.7273529","DOIUrl":null,"url":null,"abstract":"In this work, we propose a power and thermal management algorithm based on machine learning to control the thermal stresses and power consumption of the heterogeneous MPSoCs. The objectives of the proposed algorithm are increasing the performance and decreasing the spatial and temporal temperature gradients along with the thermal cycling under the power and temperature constraints. Our proposed power and thermal management method is based on a heuristic approach to speed up the convergence of the machine learning algorithm which makes it applicable for general purpose processors. Adopting Q-Learning as the machine learning algorithm, the heuristic approach aids to limit the learning space by suggesting the most appropriate actions to the agent in each decision epoch. The heuristic algorithm employs the current and previous states of the machine learning, as well as the amount of the temperature stress and power consumption of each core to determine the appropriate action for each core, independently. The proposed algorithm is evaluated on 4-core, 8-core and 16-core homogeneous and heterogeneous MPSoCs for some benchmarks in the Splash2 benchmark package. The results reveal a faster convergence of machine learning and more thermal stresses reduction.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A heuristic machine learning-based algorithm for power and thermal management of heterogeneous MPSoCs\",\"authors\":\"Arman Iranfar, S. Shahsavani, M. Kamal, A. Afzali-Kusha\",\"doi\":\"10.1109/ISLPED.2015.7273529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a power and thermal management algorithm based on machine learning to control the thermal stresses and power consumption of the heterogeneous MPSoCs. The objectives of the proposed algorithm are increasing the performance and decreasing the spatial and temporal temperature gradients along with the thermal cycling under the power and temperature constraints. Our proposed power and thermal management method is based on a heuristic approach to speed up the convergence of the machine learning algorithm which makes it applicable for general purpose processors. Adopting Q-Learning as the machine learning algorithm, the heuristic approach aids to limit the learning space by suggesting the most appropriate actions to the agent in each decision epoch. The heuristic algorithm employs the current and previous states of the machine learning, as well as the amount of the temperature stress and power consumption of each core to determine the appropriate action for each core, independently. The proposed algorithm is evaluated on 4-core, 8-core and 16-core homogeneous and heterogeneous MPSoCs for some benchmarks in the Splash2 benchmark package. The results reveal a faster convergence of machine learning and more thermal stresses reduction.\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A heuristic machine learning-based algorithm for power and thermal management of heterogeneous MPSoCs
In this work, we propose a power and thermal management algorithm based on machine learning to control the thermal stresses and power consumption of the heterogeneous MPSoCs. The objectives of the proposed algorithm are increasing the performance and decreasing the spatial and temporal temperature gradients along with the thermal cycling under the power and temperature constraints. Our proposed power and thermal management method is based on a heuristic approach to speed up the convergence of the machine learning algorithm which makes it applicable for general purpose processors. Adopting Q-Learning as the machine learning algorithm, the heuristic approach aids to limit the learning space by suggesting the most appropriate actions to the agent in each decision epoch. The heuristic algorithm employs the current and previous states of the machine learning, as well as the amount of the temperature stress and power consumption of each core to determine the appropriate action for each core, independently. The proposed algorithm is evaluated on 4-core, 8-core and 16-core homogeneous and heterogeneous MPSoCs for some benchmarks in the Splash2 benchmark package. The results reveal a faster convergence of machine learning and more thermal stresses reduction.