基于单位特征的大规模语音语料库决策树剪枝

Zhe Zhang, Lixing Huang, J. Tao
{"title":"基于单位特征的大规模语音语料库决策树剪枝","authors":"Zhe Zhang, Lixing Huang, J. Tao","doi":"10.1109/ICOSP.2008.4697231","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed and realized a corpus pruning method using decision tree. In the process of clustering, instead of conventional method, we measure the distance of pitch contours by feature vector composed by slope mean. The subjective and objective evaluation results showed that synthetic outputs based on corpus pruned through our method are close to outputs based on no-pruning corpus and are superior to conventional method with the same storage size.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unit feature based pruning of large-scale speech corpus using decision tree\",\"authors\":\"Zhe Zhang, Lixing Huang, J. Tao\",\"doi\":\"10.1109/ICOSP.2008.4697231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed and realized a corpus pruning method using decision tree. In the process of clustering, instead of conventional method, we measure the distance of pitch contours by feature vector composed by slope mean. The subjective and objective evaluation results showed that synthetic outputs based on corpus pruned through our method are close to outputs based on no-pruning corpus and are superior to conventional method with the same storage size.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并实现了一种基于决策树的语料库剪枝方法。在聚类过程中,我们采用由斜率均值组成的特征向量来度量间距轮廓的距离,而不是传统的聚类方法。主客观评价结果表明,基于该方法的裁剪后的合成输出接近于基于未裁剪的合成输出,且优于相同存储大小的常规方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unit feature based pruning of large-scale speech corpus using decision tree
In this paper, we proposed and realized a corpus pruning method using decision tree. In the process of clustering, instead of conventional method, we measure the distance of pitch contours by feature vector composed by slope mean. The subjective and objective evaluation results showed that synthetic outputs based on corpus pruned through our method are close to outputs based on no-pruning corpus and are superior to conventional method with the same storage size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pulse shaping method for Ultra-Wideband communications Matching pursuits with undercomplete dictionary A novel decision-directed channel estimator for OFDM systems Task analysis methods for data selection in task adaptation on mandarin isolated word recognition Combining LBP and Adaboost for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1