基于模糊gsa的多目标VAr规划

Sina Ebrahimi Farsangi, E. Rashedi, M. Farsangi
{"title":"基于模糊gsa的多目标VAr规划","authors":"Sina Ebrahimi Farsangi, E. Rashedi, M. Farsangi","doi":"10.1109/CSIEC.2017.7940180","DOIUrl":null,"url":null,"abstract":"In this study, fuzzy logic technique and Gravitational Search Algorithm (GSA) are applied to place Static VAr Compensator (SVC) to improve voltage stability through a multi-objective placement problem. The VAr planning is formulated to maximize indexes of fuzzy performance including: deviation of bus voltage, loss of system, and the cost of installation. The results obtained are compared with fuzzy Real Genetic Algorithm (RGA). The results obtained show that the GSA has better convergence rate comparing to fuzzy RGA in finding the best solution.","PeriodicalId":166046,"journal":{"name":"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-objective VAr planning using fuzzy-GSA\",\"authors\":\"Sina Ebrahimi Farsangi, E. Rashedi, M. Farsangi\",\"doi\":\"10.1109/CSIEC.2017.7940180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, fuzzy logic technique and Gravitational Search Algorithm (GSA) are applied to place Static VAr Compensator (SVC) to improve voltage stability through a multi-objective placement problem. The VAr planning is formulated to maximize indexes of fuzzy performance including: deviation of bus voltage, loss of system, and the cost of installation. The results obtained are compared with fuzzy Real Genetic Algorithm (RGA). The results obtained show that the GSA has better convergence rate comparing to fuzzy RGA in finding the best solution.\",\"PeriodicalId\":166046,\"journal\":{\"name\":\"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSIEC.2017.7940180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIEC.2017.7940180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将模糊逻辑技术和重力搜索算法(GSA)应用于静态无功补偿器(SVC)的多目标放置问题,以提高电压稳定性。VAr规划是为了最大化模糊性能指标,包括:母线电压偏差、系统损耗、安装成本。所得结果与模糊实遗传算法(RGA)进行了比较。结果表明,与模糊RGA相比,GSA在寻找最优解方面具有更好的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective VAr planning using fuzzy-GSA
In this study, fuzzy logic technique and Gravitational Search Algorithm (GSA) are applied to place Static VAr Compensator (SVC) to improve voltage stability through a multi-objective placement problem. The VAr planning is formulated to maximize indexes of fuzzy performance including: deviation of bus voltage, loss of system, and the cost of installation. The results obtained are compared with fuzzy Real Genetic Algorithm (RGA). The results obtained show that the GSA has better convergence rate comparing to fuzzy RGA in finding the best solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG-based multi-class motor imagery classification using variable sized filter bank and enhanced One Versus One classifier MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective optimization A genetic approach in procedural content generation for platformer games level creation Using Recurrence quantification analysis and Generalized Hurst Exponents of ECG for human authentication Improved particle swarm optimization through orthogonal experimental design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1