考虑三相电解液影响的微凹窝ECMM数值模拟

K. Prashanth, D. Patel, V. Jain, J. Ramkumar
{"title":"考虑三相电解液影响的微凹窝ECMM数值模拟","authors":"K. Prashanth, D. Patel, V. Jain, J. Ramkumar","doi":"10.1177/2516598419852208","DOIUrl":null,"url":null,"abstract":"Abstract Electrochemical surface texturing is a complex process consisting of two-phase fluid dynamics, unsteady state heat transfer, mass transfer, electrochemistry, etc., between moving boundaries. There are no anode shape prediction models for surface texturing because of the complications involved in the process. The models available for electrochemical micromachining (ECMM) are incomplete because most of them ignore the influence of sludge and gas bubbles produced during the electrochemical dissolution. In this article, a modified anode shape prediction model considering the evolution of heat, sludge and H2 bubbles have been proposed for ECMM of micro-dimples. Comparison of simulated and experimental anode profiles reveals a satisfactory agreement between the two. In addition, a comparison has been made between the proposed model and the models, which do not consider the effect of generation of sludge and gas bubbles on the conductivity of the electrolyte.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical modelling of ECMM of micro-dimples considering the effect of 3-phase electrolyte\",\"authors\":\"K. Prashanth, D. Patel, V. Jain, J. Ramkumar\",\"doi\":\"10.1177/2516598419852208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Electrochemical surface texturing is a complex process consisting of two-phase fluid dynamics, unsteady state heat transfer, mass transfer, electrochemistry, etc., between moving boundaries. There are no anode shape prediction models for surface texturing because of the complications involved in the process. The models available for electrochemical micromachining (ECMM) are incomplete because most of them ignore the influence of sludge and gas bubbles produced during the electrochemical dissolution. In this article, a modified anode shape prediction model considering the evolution of heat, sludge and H2 bubbles have been proposed for ECMM of micro-dimples. Comparison of simulated and experimental anode profiles reveals a satisfactory agreement between the two. In addition, a comparison has been made between the proposed model and the models, which do not consider the effect of generation of sludge and gas bubbles on the conductivity of the electrolyte.\",\"PeriodicalId\":129806,\"journal\":{\"name\":\"Journal of Micromanufacturing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2516598419852208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516598419852208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

电化学表面织构是一个复杂的过程,包括两相流体动力学、非定常传热、传质、电化学等,在移动边界之间进行。由于加工过程的复杂性,目前还没有阳极形状预测模型。现有的电化学微加工(ECMM)模型大多忽略了电解溶解过程中产生的污泥和气泡的影响,是不完整的。本文提出了一种考虑热、污泥和H2气泡演变的阳极形状预测模型。模拟阳极和实验阳极的比较结果表明,两者吻合得很好。此外,还将所提出的模型与未考虑污泥和气泡产生对电解质电导率影响的模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical modelling of ECMM of micro-dimples considering the effect of 3-phase electrolyte
Abstract Electrochemical surface texturing is a complex process consisting of two-phase fluid dynamics, unsteady state heat transfer, mass transfer, electrochemistry, etc., between moving boundaries. There are no anode shape prediction models for surface texturing because of the complications involved in the process. The models available for electrochemical micromachining (ECMM) are incomplete because most of them ignore the influence of sludge and gas bubbles produced during the electrochemical dissolution. In this article, a modified anode shape prediction model considering the evolution of heat, sludge and H2 bubbles have been proposed for ECMM of micro-dimples. Comparison of simulated and experimental anode profiles reveals a satisfactory agreement between the two. In addition, a comparison has been made between the proposed model and the models, which do not consider the effect of generation of sludge and gas bubbles on the conductivity of the electrolyte.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive manufacturing in the COVID-19 pandemic: Equipment and challenges? Strain softening observed during nanoindentation of equimolar-ratio Co–Mn– Fe–Cr–Ni high entropy alloy Surface modification using nanostructures and nanocoating to combat the spread of bacteria and viruses: Recent development
and challenges A review on applications of molecular dynamics in additive manufacturing A review on applications of molecular dynamics in additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1