一种新的人脸识别照度归一化算法

Housam Khalifa Bashier, L. S. Hoe, Pang Ying Han, L. Ping
{"title":"一种新的人脸识别照度归一化算法","authors":"Housam Khalifa Bashier, L. S. Hoe, Pang Ying Han, L. Ping","doi":"10.1109/ICSIPA.2013.6708040","DOIUrl":null,"url":null,"abstract":"Face recognitions systems suffer from the problem associated with illumination variation. Therefore, there's a need to address this problem. In this paper, we present a novel algorithm for illumination normalization call Local Trapezoid Feature LTF. The features are derived from the trapezoid rule and the experiments results on extended Yale face database demonstrated the effectiveness and the superiority of the algorithm. Furthermore, our algorithm doesn't require dimensionality reduction or feature extraction.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel illumination normalization algorithm for face recognition\",\"authors\":\"Housam Khalifa Bashier, L. S. Hoe, Pang Ying Han, L. Ping\",\"doi\":\"10.1109/ICSIPA.2013.6708040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognitions systems suffer from the problem associated with illumination variation. Therefore, there's a need to address this problem. In this paper, we present a novel algorithm for illumination normalization call Local Trapezoid Feature LTF. The features are derived from the trapezoid rule and the experiments results on extended Yale face database demonstrated the effectiveness and the superiority of the algorithm. Furthermore, our algorithm doesn't require dimensionality reduction or feature extraction.\",\"PeriodicalId\":440373,\"journal\":{\"name\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2013.6708040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人脸识别系统受到光照变化的困扰。因此,有必要解决这个问题。本文提出了一种新的照明归一化算法——局部梯形特征LTF。根据梯形规则导出特征,在扩展的耶鲁人脸数据库上的实验结果证明了该算法的有效性和优越性。此外,我们的算法不需要降维或特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel illumination normalization algorithm for face recognition
Face recognitions systems suffer from the problem associated with illumination variation. Therefore, there's a need to address this problem. In this paper, we present a novel algorithm for illumination normalization call Local Trapezoid Feature LTF. The features are derived from the trapezoid rule and the experiments results on extended Yale face database demonstrated the effectiveness and the superiority of the algorithm. Furthermore, our algorithm doesn't require dimensionality reduction or feature extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
List of reviewers Multi-Level View Synthesis (MLVS) based on Depth Image Layer Separation (DILS) algorithm for multi-camera view system Mouth covered detection for yawn Depth Image Layers Separation (DILS) algorithm of image view synthesis based on stereo vision Accurate videogrammetric data for human limb movement research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1