基于三种统计方法的布洛芬药代动力学效应比较

Wanqing Peng, Haoxuan Li
{"title":"基于三种统计方法的布洛芬药代动力学效应比较","authors":"Wanqing Peng, Haoxuan Li","doi":"10.1145/3448748.3448768","DOIUrl":null,"url":null,"abstract":"Ibuprofen is an antipyretic and analgesic anti-inflammatory drug. In order to study the pharmacokinetic characteristics of Chinese healthy adults after ibuprofen injection, this article establishes a pharmacokinetic nonlinear mixed effect model to analyze the blood concentration and clinical characteristics of ibuprofen of 12 healthy volunteers after a single dose. Three statistical methods, FO (First-order), FOCE-I (First-order conditional estimation with interaction), and BAYES (Markov chain Monte Carlo Bayesian) are used to estimate the parameters of the population pharmacokinetics, then analyze and compare in terms of relative standard error, goodness of fit and convergence speed. BAYES is suitable for higher estimation requirements of goodness of fit, FOCE-I is suitable for estimation that needs to consider residuals and inter-individual variation, and FO is suitable for the evaluation of massive medical data, in which the estimands needs to be obtained with higher convergence speed.","PeriodicalId":115821,"journal":{"name":"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Pharmacokinetic Effects of Ibuprofen Based on Three Statistical Methods\",\"authors\":\"Wanqing Peng, Haoxuan Li\",\"doi\":\"10.1145/3448748.3448768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ibuprofen is an antipyretic and analgesic anti-inflammatory drug. In order to study the pharmacokinetic characteristics of Chinese healthy adults after ibuprofen injection, this article establishes a pharmacokinetic nonlinear mixed effect model to analyze the blood concentration and clinical characteristics of ibuprofen of 12 healthy volunteers after a single dose. Three statistical methods, FO (First-order), FOCE-I (First-order conditional estimation with interaction), and BAYES (Markov chain Monte Carlo Bayesian) are used to estimate the parameters of the population pharmacokinetics, then analyze and compare in terms of relative standard error, goodness of fit and convergence speed. BAYES is suitable for higher estimation requirements of goodness of fit, FOCE-I is suitable for estimation that needs to consider residuals and inter-individual variation, and FO is suitable for the evaluation of massive medical data, in which the estimands needs to be obtained with higher convergence speed.\",\"PeriodicalId\":115821,\"journal\":{\"name\":\"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448748.3448768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448748.3448768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

布洛芬是一种解热镇痛抗炎药。为了研究我国健康成人注射布洛芬后的药代动力学特征,本文建立了药代动力学非线性混合效应模型,分析12名健康志愿者单次给药后布洛芬血药浓度及临床特征。采用FO(一阶)、fce - i(一阶条件估计)和BAYES(马尔可夫链蒙特卡罗贝叶斯)三种统计方法对种群药代动力学参数进行估计,并从相对标准误差、拟合优度和收敛速度等方面进行分析比较。BAYES适用于对拟合优度要求较高的估计,fce -i适用于需要考虑残差和个体间变异的估计,FO适用于需要以较高收敛速度获得估计的海量医疗数据的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Pharmacokinetic Effects of Ibuprofen Based on Three Statistical Methods
Ibuprofen is an antipyretic and analgesic anti-inflammatory drug. In order to study the pharmacokinetic characteristics of Chinese healthy adults after ibuprofen injection, this article establishes a pharmacokinetic nonlinear mixed effect model to analyze the blood concentration and clinical characteristics of ibuprofen of 12 healthy volunteers after a single dose. Three statistical methods, FO (First-order), FOCE-I (First-order conditional estimation with interaction), and BAYES (Markov chain Monte Carlo Bayesian) are used to estimate the parameters of the population pharmacokinetics, then analyze and compare in terms of relative standard error, goodness of fit and convergence speed. BAYES is suitable for higher estimation requirements of goodness of fit, FOCE-I is suitable for estimation that needs to consider residuals and inter-individual variation, and FO is suitable for the evaluation of massive medical data, in which the estimands needs to be obtained with higher convergence speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Picard Versions for Analyzing functional Magnetic Resonance Imaging Data Study on Dispatching Model of Block Economy Based-Data Mining A Modified HOG Algorithm based on the Prewitt Operator RNA-seq Reveals the Increased Risk of Heart and Cardiovascular Disease by SARS-CoV-2 Infection Curative Effect of Tongyu Decoction on Neurological Deficit and Rehabilitation Effect of Patients with Cerebral Hemorrhage in Recovery Period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1