利用并行卷积神经网络诊断阿尔茨海默病

Amel Slim, A. Melouah, Soumai Layachi
{"title":"利用并行卷积神经网络诊断阿尔茨海默病","authors":"Amel Slim, A. Melouah, Soumai Layachi","doi":"10.1109/ICRAMI52622.2021.9585974","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease is progressive brain cell damage. This damage can be slowed down if the disease is detected at an early stage. Computer-Aided detection systems bring great help for this problem especially with the development of convolution neural networks. This work proposes an Alzheimer's disease diagnostic approach based on a segmentation technique and convolution neural networks. We segment an MRI brain image by a recursive thresholding process. This segmentation generates a set of output images witch simulate progressive brain degradation. Convolution neural networks capture this degradation and assign a value that indicates Alzheimer's disease stage.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alzheimer’s Disease Diagnosis Using Parallel Convolutional Neural Networks\",\"authors\":\"Amel Slim, A. Melouah, Soumai Layachi\",\"doi\":\"10.1109/ICRAMI52622.2021.9585974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer's disease is progressive brain cell damage. This damage can be slowed down if the disease is detected at an early stage. Computer-Aided detection systems bring great help for this problem especially with the development of convolution neural networks. This work proposes an Alzheimer's disease diagnostic approach based on a segmentation technique and convolution neural networks. We segment an MRI brain image by a recursive thresholding process. This segmentation generates a set of output images witch simulate progressive brain degradation. Convolution neural networks capture this degradation and assign a value that indicates Alzheimer's disease stage.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病是一种进行性脑细胞损伤。如果在早期发现这种疾病,这种损害可以减缓。计算机辅助检测系统特别是卷积神经网络的发展为这一问题的解决提供了很大的帮助。本文提出了一种基于分割技术和卷积神经网络的阿尔茨海默病诊断方法。我们通过递归阈值处理分割MRI脑图像。这种分割产生一组输出图像来模拟大脑的逐渐退化。卷积神经网络捕捉到这种退化,并分配一个值来指示阿尔茨海默病的阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alzheimer’s Disease Diagnosis Using Parallel Convolutional Neural Networks
Alzheimer's disease is progressive brain cell damage. This damage can be slowed down if the disease is detected at an early stage. Computer-Aided detection systems bring great help for this problem especially with the development of convolution neural networks. This work proposes an Alzheimer's disease diagnostic approach based on a segmentation technique and convolution neural networks. We segment an MRI brain image by a recursive thresholding process. This segmentation generates a set of output images witch simulate progressive brain degradation. Convolution neural networks capture this degradation and assign a value that indicates Alzheimer's disease stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1