Yumin Liu, Morun Zhu, Jingpo Bai, Yu Qin, Yao Zhang
{"title":"基于直接多步超前策略和递归神经网络的可再生能源发电短期概率预测","authors":"Yumin Liu, Morun Zhu, Jingpo Bai, Yu Qin, Yao Zhang","doi":"10.1109/ICPET55165.2022.9918497","DOIUrl":null,"url":null,"abstract":"With the rapid development of renewable energy generation, probabilistic forecasting has attracted more attention compared to deterministic forecasting. This paper focuses on generating short-term probabilistic forecasting of renewable energy power with quantiles chosen as uncertainty representation. First, in order to avoid the crossing-quantile problem, some constraints associated with quantile-increment series, which are obtained by reformulating the quantile series, are proposed. Then, recurrent neural network is adopted to depict the complex nonlinear relationship between predictors and quantiles, and a reasonable decoder structure is designed to obtain multistep-ahead quantiles prediction directly. Numerical results on a real-world solar power dataset verify the effectiveness of our proposed model, which is capable of providing the high-quality quantiles with less time compared with some advanced benchmarks.","PeriodicalId":355634,"journal":{"name":"2022 4th International Conference on Power and Energy Technology (ICPET)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Probabilistic Forecasting of Renewable Energy Generation with Direct Multistep-Ahead Strategy and Recurrent Neural Network\",\"authors\":\"Yumin Liu, Morun Zhu, Jingpo Bai, Yu Qin, Yao Zhang\",\"doi\":\"10.1109/ICPET55165.2022.9918497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of renewable energy generation, probabilistic forecasting has attracted more attention compared to deterministic forecasting. This paper focuses on generating short-term probabilistic forecasting of renewable energy power with quantiles chosen as uncertainty representation. First, in order to avoid the crossing-quantile problem, some constraints associated with quantile-increment series, which are obtained by reformulating the quantile series, are proposed. Then, recurrent neural network is adopted to depict the complex nonlinear relationship between predictors and quantiles, and a reasonable decoder structure is designed to obtain multistep-ahead quantiles prediction directly. Numerical results on a real-world solar power dataset verify the effectiveness of our proposed model, which is capable of providing the high-quality quantiles with less time compared with some advanced benchmarks.\",\"PeriodicalId\":355634,\"journal\":{\"name\":\"2022 4th International Conference on Power and Energy Technology (ICPET)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Power and Energy Technology (ICPET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPET55165.2022.9918497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Power and Energy Technology (ICPET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPET55165.2022.9918497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short-Term Probabilistic Forecasting of Renewable Energy Generation with Direct Multistep-Ahead Strategy and Recurrent Neural Network
With the rapid development of renewable energy generation, probabilistic forecasting has attracted more attention compared to deterministic forecasting. This paper focuses on generating short-term probabilistic forecasting of renewable energy power with quantiles chosen as uncertainty representation. First, in order to avoid the crossing-quantile problem, some constraints associated with quantile-increment series, which are obtained by reformulating the quantile series, are proposed. Then, recurrent neural network is adopted to depict the complex nonlinear relationship between predictors and quantiles, and a reasonable decoder structure is designed to obtain multistep-ahead quantiles prediction directly. Numerical results on a real-world solar power dataset verify the effectiveness of our proposed model, which is capable of providing the high-quality quantiles with less time compared with some advanced benchmarks.