基于改进变分模态分解和频率加权能量算子的行星齿轮箱早期故障诊断

Hongkun Li, Chaoge Wang, Jiayu Ou
{"title":"基于改进变分模态分解和频率加权能量算子的行星齿轮箱早期故障诊断","authors":"Hongkun Li, Chaoge Wang, Jiayu Ou","doi":"10.1115/gt2019-90572","DOIUrl":null,"url":null,"abstract":"\n Planetary gearbox is widely used in large and complex mechanical equipment such as wind power generation, helicopters and petrochemical industry. Gear failures occur frequently in working conditions at low speeds, high service load and harsh operating environments. Incipient fault diagnosis can avoid the occurrence of major accidents and loss of personnel property. Aiming at the problems that the incipient fault of planetary gearbox is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, a improved VMD algorithm based on energy difference as an evaluation parameter to automatically determine the decomposition level k is proposed. On this basis, a new method for early fault feature extraction of planetary gearbox based on the improved VMD and frequency-weighted energy operator is proposed. Firstly, the vibration signal is pre-decomposed by VMD, and the energy difference between the component signal and the original signal under different K-values is calculated respectively. The optimal decomposition level k is determined according to the energy difference curve. Then, according to kurtosis criterion, sensitive components are selected from the k modal components obtained by the decomposition to reconstruct. Finally, a new frequency-weighted energy operator is used to demodulate the reconstructed signal. The fault characteristic frequency information of the planetary gearbox can be accurately extracted from the energy spectrum. The method is applied to the simulation fault data and actual data of planetary gearbox, and the weak fault characteristics of planetary gearbox are extracted effectively, and the early fault characteristics are distinguished. The results show that the new method has certain application value and practical significance.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incipient Fault Diagnosis of the Planetary Gearbox Based on Improved Variational Mode Decomposition and Frequency-Weighted Energy Operator\",\"authors\":\"Hongkun Li, Chaoge Wang, Jiayu Ou\",\"doi\":\"10.1115/gt2019-90572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Planetary gearbox is widely used in large and complex mechanical equipment such as wind power generation, helicopters and petrochemical industry. Gear failures occur frequently in working conditions at low speeds, high service load and harsh operating environments. Incipient fault diagnosis can avoid the occurrence of major accidents and loss of personnel property. Aiming at the problems that the incipient fault of planetary gearbox is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, a improved VMD algorithm based on energy difference as an evaluation parameter to automatically determine the decomposition level k is proposed. On this basis, a new method for early fault feature extraction of planetary gearbox based on the improved VMD and frequency-weighted energy operator is proposed. Firstly, the vibration signal is pre-decomposed by VMD, and the energy difference between the component signal and the original signal under different K-values is calculated respectively. The optimal decomposition level k is determined according to the energy difference curve. Then, according to kurtosis criterion, sensitive components are selected from the k modal components obtained by the decomposition to reconstruct. Finally, a new frequency-weighted energy operator is used to demodulate the reconstructed signal. The fault characteristic frequency information of the planetary gearbox can be accurately extracted from the energy spectrum. The method is applied to the simulation fault data and actual data of planetary gearbox, and the weak fault characteristics of planetary gearbox are extracted effectively, and the early fault characteristics are distinguished. The results show that the new method has certain application value and practical significance.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-90572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

行星齿轮箱广泛应用于风力发电、直升机、石油化工等大型复杂机械设备。在低速、高负荷和恶劣的工作环境下,齿轮故障是经常发生的。早期故障诊断可以避免重大事故的发生和人员财产的损失。针对行星齿轮箱早期故障难以识别、变分模态分解(VMD)分解的内禀模态函数个数必须预先设定且不能自适应选择的问题,提出了一种基于能量差作为评价参数的改进的变分模态分解算法,自动确定分解等级k。在此基础上,提出了一种基于改进VMD和频率加权能量算子的行星齿轮箱早期故障特征提取新方法。首先,对振动信号进行VMD预分解,分别计算不同k值下分量信号与原始信号的能量差;根据能差曲线确定最优分解层次k。然后根据峰度判据,从分解得到的k个模态分量中选取敏感分量进行重构。最后,采用一种新的频率加权能量算子对重构信号进行解调。从能量谱中可以准确提取行星齿轮箱的故障特征频率信息。将该方法应用于行星齿轮箱的仿真故障数据和实际故障数据,有效地提取了行星齿轮箱的弱故障特征,并区分了行星齿轮箱的早期故障特征。结果表明,该方法具有一定的应用价值和实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incipient Fault Diagnosis of the Planetary Gearbox Based on Improved Variational Mode Decomposition and Frequency-Weighted Energy Operator
Planetary gearbox is widely used in large and complex mechanical equipment such as wind power generation, helicopters and petrochemical industry. Gear failures occur frequently in working conditions at low speeds, high service load and harsh operating environments. Incipient fault diagnosis can avoid the occurrence of major accidents and loss of personnel property. Aiming at the problems that the incipient fault of planetary gearbox is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, a improved VMD algorithm based on energy difference as an evaluation parameter to automatically determine the decomposition level k is proposed. On this basis, a new method for early fault feature extraction of planetary gearbox based on the improved VMD and frequency-weighted energy operator is proposed. Firstly, the vibration signal is pre-decomposed by VMD, and the energy difference between the component signal and the original signal under different K-values is calculated respectively. The optimal decomposition level k is determined according to the energy difference curve. Then, according to kurtosis criterion, sensitive components are selected from the k modal components obtained by the decomposition to reconstruct. Finally, a new frequency-weighted energy operator is used to demodulate the reconstructed signal. The fault characteristic frequency information of the planetary gearbox can be accurately extracted from the energy spectrum. The method is applied to the simulation fault data and actual data of planetary gearbox, and the weak fault characteristics of planetary gearbox are extracted effectively, and the early fault characteristics are distinguished. The results show that the new method has certain application value and practical significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1