基于深度残差学习的遥感图像泛锐化

Yancong Wei, Q. Yuan
{"title":"基于深度残差学习的遥感图像泛锐化","authors":"Yancong Wei, Q. Yuan","doi":"10.1109/RSIP.2017.7958794","DOIUrl":null,"url":null,"abstract":"We proposed a deep convolutional network for multi-spectral image pan-sharpening to overcome the drawbacks of traditional methods and improve the fusion accuracy. To break the performance limitation of deep networks, residual learning with specific adaption to image fusion tasks is applied to optimize the architecture of proposed network. Results of adequate experiments support that our model can yield high resolution multi-spectral images with state-of-the-art qualities, as the information in both spatial and spectral domains has been accurately preserved.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Deep residual learning for remote sensed imagery pansharpening\",\"authors\":\"Yancong Wei, Q. Yuan\",\"doi\":\"10.1109/RSIP.2017.7958794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a deep convolutional network for multi-spectral image pan-sharpening to overcome the drawbacks of traditional methods and improve the fusion accuracy. To break the performance limitation of deep networks, residual learning with specific adaption to image fusion tasks is applied to optimize the architecture of proposed network. Results of adequate experiments support that our model can yield high resolution multi-spectral images with state-of-the-art qualities, as the information in both spatial and spectral domains has been accurately preserved.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

为了克服传统多光谱图像泛锐化方法的不足,提高融合精度,提出了一种基于深度卷积网络的多光谱图像泛锐化方法。为了突破深度网络的性能限制,利用残差学习对图像融合任务进行优化。充分的实验结果支持我们的模型可以产生具有最先进质量的高分辨率多光谱图像,因为空间和光谱域的信息都被准确地保留了下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep residual learning for remote sensed imagery pansharpening
We proposed a deep convolutional network for multi-spectral image pan-sharpening to overcome the drawbacks of traditional methods and improve the fusion accuracy. To break the performance limitation of deep networks, residual learning with specific adaption to image fusion tasks is applied to optimize the architecture of proposed network. Results of adequate experiments support that our model can yield high resolution multi-spectral images with state-of-the-art qualities, as the information in both spatial and spectral domains has been accurately preserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm of remote sensing image matching based on corner-point A weakly supervised road extraction approach via deep convolutional nets based image segmentation Hyperspectral image classification based on spectral-spatial feature extraction An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images The development of deep learning in synthetic aperture radar imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1