基于集成的科学数据传输推荐引擎

William Agnew, Michael Fischer, Ian T Foster, K. Chard
{"title":"基于集成的科学数据传输推荐引擎","authors":"William Agnew, Michael Fischer, Ian T Foster, K. Chard","doi":"10.1109/DATACLOUD.2016.5","DOIUrl":null,"url":null,"abstract":"Big data scientists face the challenge of locating valuable datasets across a network of distributed storage locations. We explore methods for recommending storage locations (“endpoints”) for users based on a range of prediction models including collaborative filtering and heuristics that consider available information such as user, institution, access history, endpoint ownership, and endpoint usage. We combine the strengths of these models by training a deep recurrent neural network on their predictions. Collectively we show, via analysis of historical usage from the Globus research data management service, that our approach can predict the next storage location accessed by users with 80.3% and 95.3% accuracy for top-1 and top-3 recommendations, respectively. Additionally, our heuristics can predict the endpoints that users will use in the future with over 75% precision and recall.","PeriodicalId":325593,"journal":{"name":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Ensemble-Based Recommendation Engine for Scientific Data Transfers\",\"authors\":\"William Agnew, Michael Fischer, Ian T Foster, K. Chard\",\"doi\":\"10.1109/DATACLOUD.2016.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data scientists face the challenge of locating valuable datasets across a network of distributed storage locations. We explore methods for recommending storage locations (“endpoints”) for users based on a range of prediction models including collaborative filtering and heuristics that consider available information such as user, institution, access history, endpoint ownership, and endpoint usage. We combine the strengths of these models by training a deep recurrent neural network on their predictions. Collectively we show, via analysis of historical usage from the Globus research data management service, that our approach can predict the next storage location accessed by users with 80.3% and 95.3% accuracy for top-1 and top-3 recommendations, respectively. Additionally, our heuristics can predict the endpoints that users will use in the future with over 75% precision and recall.\",\"PeriodicalId\":325593,\"journal\":{\"name\":\"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATACLOUD.2016.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATACLOUD.2016.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大数据科学家面临着在分布式存储位置的网络中定位有价值的数据集的挑战。我们探索了为用户推荐存储位置(“端点”)的方法,这些方法基于一系列预测模型,包括协作过滤和启发式,这些模型考虑了用户、机构、访问历史、端点所有权和端点使用等可用信息。我们通过训练深度递归神经网络来结合这些模型的优势。总的来说,通过对Globus研究数据管理服务的历史使用情况的分析,我们表明,我们的方法可以预测用户访问的下一个存储位置,对于前1名和前3名的推荐,准确率分别为80.3%和95.3%。此外,我们的启发式方法可以预测用户未来将使用的端点,准确率和召回率超过75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Ensemble-Based Recommendation Engine for Scientific Data Transfers
Big data scientists face the challenge of locating valuable datasets across a network of distributed storage locations. We explore methods for recommending storage locations (“endpoints”) for users based on a range of prediction models including collaborative filtering and heuristics that consider available information such as user, institution, access history, endpoint ownership, and endpoint usage. We combine the strengths of these models by training a deep recurrent neural network on their predictions. Collectively we show, via analysis of historical usage from the Globus research data management service, that our approach can predict the next storage location accessed by users with 80.3% and 95.3% accuracy for top-1 and top-3 recommendations, respectively. Additionally, our heuristics can predict the endpoints that users will use in the future with over 75% precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Data-Aware Task Dispatching for Batch Queuing Systems A Multi-tenant Fair Share Approach to Full-text Search Engine An Efficient Parallel Implementation of a Light-weight Data Privacy Method for Mobile Cloud Users Asterism: Pegasus and Dispel4py Hybrid Workflows for Data-Intensive Science Data-Intensive Supercomputing in the Cloud: Global Analytics for Satellite Imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1