{"title":"求解量子退火炉上的大最小顶点覆盖问题","authors":"Elijah Pelofske, Georg Hahn, H. Djidjev","doi":"10.1145/3310273.3321562","DOIUrl":null,"url":null,"abstract":"We consider the minimum vertex cover problem having applications in e.g. biochemistry and network security. Quantum annealers can find the optimum solution of such NP-hard problems, given they can be embedded on the hardware. This is often infeasible due to limitations of the hardware connectivity structure. This paper presents a decomposition algorithm for the minimum vertex cover problem: The algorithm recursively divides an arbitrary problem until the generated subproblems can be embedded and solved on the annealer. To speed up the decomposition, we propose several pruning and reduction techniques. The performance of our algorithm is assessed in a simulation study.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Solving large minimum vertex cover problems on a quantum annealer\",\"authors\":\"Elijah Pelofske, Georg Hahn, H. Djidjev\",\"doi\":\"10.1145/3310273.3321562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the minimum vertex cover problem having applications in e.g. biochemistry and network security. Quantum annealers can find the optimum solution of such NP-hard problems, given they can be embedded on the hardware. This is often infeasible due to limitations of the hardware connectivity structure. This paper presents a decomposition algorithm for the minimum vertex cover problem: The algorithm recursively divides an arbitrary problem until the generated subproblems can be embedded and solved on the annealer. To speed up the decomposition, we propose several pruning and reduction techniques. The performance of our algorithm is assessed in a simulation study.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3321562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3321562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving large minimum vertex cover problems on a quantum annealer
We consider the minimum vertex cover problem having applications in e.g. biochemistry and network security. Quantum annealers can find the optimum solution of such NP-hard problems, given they can be embedded on the hardware. This is often infeasible due to limitations of the hardware connectivity structure. This paper presents a decomposition algorithm for the minimum vertex cover problem: The algorithm recursively divides an arbitrary problem until the generated subproblems can be embedded and solved on the annealer. To speed up the decomposition, we propose several pruning and reduction techniques. The performance of our algorithm is assessed in a simulation study.