{"title":"大穿透风配电馈线电压最优控制","authors":"Seyhan Tural, O. Ceylan, S. Paudyal","doi":"10.1109/UPEC.2017.8231936","DOIUrl":null,"url":null,"abstract":"This paper develops coordinated voltage control with high penetration of wind in power distribution systems. In the proposed method, daily schedule of optimal voltage profiles are determined by using optimization technique based on predicted values of load demand and by controlling tap positions of regulators, switched capacitors, and reactive power outputs of the inverters. In this paper, three optimal voltage control models are developed: the first model uses capacitors as control devices; the second model uses capacitors and tap changers of voltage regulators; and the third model includes the inverters of the wind turbines as well. We use a recently developed heuristic, Sine-cosine algorithm, to solve the optimal voltage control problems. The case studies carried out on a modified 33-node feeder shows the effectiveness of the proposed optimization models in controlling the voltages in distribution feeders.","PeriodicalId":272049,"journal":{"name":"2017 52nd International Universities Power Engineering Conference (UPEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal voltage control in distribution feeders with large penetration of wind\",\"authors\":\"Seyhan Tural, O. Ceylan, S. Paudyal\",\"doi\":\"10.1109/UPEC.2017.8231936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops coordinated voltage control with high penetration of wind in power distribution systems. In the proposed method, daily schedule of optimal voltage profiles are determined by using optimization technique based on predicted values of load demand and by controlling tap positions of regulators, switched capacitors, and reactive power outputs of the inverters. In this paper, three optimal voltage control models are developed: the first model uses capacitors as control devices; the second model uses capacitors and tap changers of voltage regulators; and the third model includes the inverters of the wind turbines as well. We use a recently developed heuristic, Sine-cosine algorithm, to solve the optimal voltage control problems. The case studies carried out on a modified 33-node feeder shows the effectiveness of the proposed optimization models in controlling the voltages in distribution feeders.\",\"PeriodicalId\":272049,\"journal\":{\"name\":\"2017 52nd International Universities Power Engineering Conference (UPEC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 52nd International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2017.8231936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 52nd International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2017.8231936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal voltage control in distribution feeders with large penetration of wind
This paper develops coordinated voltage control with high penetration of wind in power distribution systems. In the proposed method, daily schedule of optimal voltage profiles are determined by using optimization technique based on predicted values of load demand and by controlling tap positions of regulators, switched capacitors, and reactive power outputs of the inverters. In this paper, three optimal voltage control models are developed: the first model uses capacitors as control devices; the second model uses capacitors and tap changers of voltage regulators; and the third model includes the inverters of the wind turbines as well. We use a recently developed heuristic, Sine-cosine algorithm, to solve the optimal voltage control problems. The case studies carried out on a modified 33-node feeder shows the effectiveness of the proposed optimization models in controlling the voltages in distribution feeders.