基于可分离卷积神经网络的大规模交通网络速度预测

Arnold Loaiza, J. Herrera, Luis Mantilla
{"title":"基于可分离卷积神经网络的大规模交通网络速度预测","authors":"Arnold Loaiza, J. Herrera, Luis Mantilla","doi":"10.1145/3177457.3177464","DOIUrl":null,"url":null,"abstract":"This paper proposes the reduction of the convergence time on a Convolutional Neural Network (CNN) method for traffic speed prediction, without reducing the performance of speed prediction method. The proposed method contains two procedures: The first one is to convert the traffic network data to images; in this case the speed variable will be transformed. The second step of the procedure presents a modification of the CNN method for speed prediction in which a separable convolution is used to reduce the number of parameters. This separable convolution helps to reducing the convergence time of speed predictions for large-scale transportation network. The proposal is evaluated with real data from the Caltrans Performance Measurement System (PeMS), obtained through sensors. The results show that Separable Convolutional Neural Network (SCNN) reduces convergence time of CNN method without losing the performance of the predictions of traffic speed in a large-scale transportation network.","PeriodicalId":297531,"journal":{"name":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using a Separable Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction\",\"authors\":\"Arnold Loaiza, J. Herrera, Luis Mantilla\",\"doi\":\"10.1145/3177457.3177464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the reduction of the convergence time on a Convolutional Neural Network (CNN) method for traffic speed prediction, without reducing the performance of speed prediction method. The proposed method contains two procedures: The first one is to convert the traffic network data to images; in this case the speed variable will be transformed. The second step of the procedure presents a modification of the CNN method for speed prediction in which a separable convolution is used to reduce the number of parameters. This separable convolution helps to reducing the convergence time of speed predictions for large-scale transportation network. The proposal is evaluated with real data from the Caltrans Performance Measurement System (PeMS), obtained through sensors. The results show that Separable Convolutional Neural Network (SCNN) reduces convergence time of CNN method without losing the performance of the predictions of traffic speed in a large-scale transportation network.\",\"PeriodicalId\":297531,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3177457.3177464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177457.3177464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出在不降低车速预测方法性能的前提下,缩短卷积神经网络(CNN)方法的收敛时间。该方法包括两个步骤:首先将交通网络数据转换为图像;在这种情况下,速度变量将被转换。该程序的第二步提出了对CNN速度预测方法的修改,其中使用可分离卷积来减少参数的数量。这种可分离卷积有助于减少大规模交通网络速度预测的收敛时间。通过传感器获得的Caltrans性能测量系统(PeMS)的真实数据对该方案进行了评估。结果表明,可分离卷积神经网络(SCNN)在不影响大规模交通网络中交通速度预测性能的前提下,缩短了CNN方法的收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using a Separable Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
This paper proposes the reduction of the convergence time on a Convolutional Neural Network (CNN) method for traffic speed prediction, without reducing the performance of speed prediction method. The proposed method contains two procedures: The first one is to convert the traffic network data to images; in this case the speed variable will be transformed. The second step of the procedure presents a modification of the CNN method for speed prediction in which a separable convolution is used to reduce the number of parameters. This separable convolution helps to reducing the convergence time of speed predictions for large-scale transportation network. The proposal is evaluated with real data from the Caltrans Performance Measurement System (PeMS), obtained through sensors. The results show that Separable Convolutional Neural Network (SCNN) reduces convergence time of CNN method without losing the performance of the predictions of traffic speed in a large-scale transportation network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
rTuner: A Performance Enhancement of MapReduce Job Sensitivity Analysis of a Causality-Informed Genetic Programming Ensemble for Inferring Dynamical Systems Improving Efficiency of TV PCB Assembly Line Using a Discrete Event Simulation Approach: A Case Study Workflow for Developing High-Resolution 3D City Models in Korea Standard Values of Service Level of Intersection for Collection and Distribution Roads of Container Terminals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1