基于边界特征变换的弱监督语义分割的跨像素依赖

Yuhui Guo, Xun Liang, Tang Hui, Bo Wu, Xiangping Zheng
{"title":"基于边界特征变换的弱监督语义分割的跨像素依赖","authors":"Yuhui Guo, Xun Liang, Tang Hui, Bo Wu, Xiangping Zheng","doi":"10.1145/3512527.3531360","DOIUrl":null,"url":null,"abstract":"Weakly supervised semantic segmentation with image-level labels is a challenging problem that typically relies on the initial responses generated by the classification network to locate object regions. However, such initial responses only cover the most discriminative parts of the object and may incorrectly activate in the background regions. To address this problem, we propose a Cross-pixel Dependency with Boundary-feature Transformation (CDBT) method for weakly supervised semantic segmentation. Specifically, we develop a boundary-feature transformation mechanism, to build strong connections among pixels belonging to the same object but weak connections among different objects. Moreover, we design a cross-pixel dependency module to enhance the initial responses, which exploits context appearance information and refines the prediction of current pixels by the relations of global channel pixels, thus generating pseudo labels of higher quality for training the semantic segmentation network. Extensive experiments on the PASCAL VOC 2012 segmentation benchmark demonstrate that our method outperforms state-of-the-art methods using image-level labels as weak supervision.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Pixel Dependency with Boundary-Feature Transformation for Weakly Supervised Semantic Segmentation\",\"authors\":\"Yuhui Guo, Xun Liang, Tang Hui, Bo Wu, Xiangping Zheng\",\"doi\":\"10.1145/3512527.3531360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weakly supervised semantic segmentation with image-level labels is a challenging problem that typically relies on the initial responses generated by the classification network to locate object regions. However, such initial responses only cover the most discriminative parts of the object and may incorrectly activate in the background regions. To address this problem, we propose a Cross-pixel Dependency with Boundary-feature Transformation (CDBT) method for weakly supervised semantic segmentation. Specifically, we develop a boundary-feature transformation mechanism, to build strong connections among pixels belonging to the same object but weak connections among different objects. Moreover, we design a cross-pixel dependency module to enhance the initial responses, which exploits context appearance information and refines the prediction of current pixels by the relations of global channel pixels, thus generating pseudo labels of higher quality for training the semantic segmentation network. Extensive experiments on the PASCAL VOC 2012 segmentation benchmark demonstrate that our method outperforms state-of-the-art methods using image-level labels as weak supervision.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

带有图像级标签的弱监督语义分割是一个具有挑战性的问题,它通常依赖于分类网络产生的初始响应来定位目标区域。然而,这样的初始反应只覆盖了物体最具辨别性的部分,可能在背景区域被错误地激活。为了解决这个问题,我们提出了一种基于边界特征变换的跨像素依赖(CDBT)方法用于弱监督语义分割。具体而言,我们开发了一种边界-特征转换机制,在属于同一对象的像素之间建立强连接,而在不同对象之间建立弱连接。此外,我们设计了一个跨像素依赖模块来增强初始响应,该模块利用上下文外观信息,通过全局通道像素的关系来细化当前像素的预测,从而生成更高质量的伪标签,用于训练语义分割网络。在PASCAL VOC 2012分割基准上的大量实验表明,我们的方法优于使用图像级标签作为弱监督的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Pixel Dependency with Boundary-Feature Transformation for Weakly Supervised Semantic Segmentation
Weakly supervised semantic segmentation with image-level labels is a challenging problem that typically relies on the initial responses generated by the classification network to locate object regions. However, such initial responses only cover the most discriminative parts of the object and may incorrectly activate in the background regions. To address this problem, we propose a Cross-pixel Dependency with Boundary-feature Transformation (CDBT) method for weakly supervised semantic segmentation. Specifically, we develop a boundary-feature transformation mechanism, to build strong connections among pixels belonging to the same object but weak connections among different objects. Moreover, we design a cross-pixel dependency module to enhance the initial responses, which exploits context appearance information and refines the prediction of current pixels by the relations of global channel pixels, thus generating pseudo labels of higher quality for training the semantic segmentation network. Extensive experiments on the PASCAL VOC 2012 segmentation benchmark demonstrate that our method outperforms state-of-the-art methods using image-level labels as weak supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1