基于几何模型的概率地磁指纹低功耗方位估计

Johannes Meyer, Lars Klitzke, Gerd von Cölln
{"title":"基于几何模型的概率地磁指纹低功耗方位估计","authors":"Johannes Meyer, Lars Klitzke, Gerd von Cölln","doi":"10.1109/INDIN41052.2019.8972227","DOIUrl":null,"url":null,"abstract":"This work presents a new approach to estimate the orientation of wireless sensor nodes (WSN) using geomagnetic sensors. The main contribution is a new algorithm for supervised orientation estimation using geomagnetic fingerprinting. Combined with hierarchical sensing our approach leads to a significant reduction of power consumption.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Probabilistic Geomagnetic Fingerprinting for Low-Power Orientation Estimation utilising Geometric Models\",\"authors\":\"Johannes Meyer, Lars Klitzke, Gerd von Cölln\",\"doi\":\"10.1109/INDIN41052.2019.8972227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new approach to estimate the orientation of wireless sensor nodes (WSN) using geomagnetic sensors. The main contribution is a new algorithm for supervised orientation estimation using geomagnetic fingerprinting. Combined with hierarchical sensing our approach leads to a significant reduction of power consumption.\",\"PeriodicalId\":260220,\"journal\":{\"name\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN41052.2019.8972227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用地磁传感器估计无线传感器节点方向的新方法。主要贡献是利用地磁指纹技术提出了一种新的有监督方向估计算法。结合分层传感,我们的方法可以显著降低功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic Geomagnetic Fingerprinting for Low-Power Orientation Estimation utilising Geometric Models
This work presents a new approach to estimate the orientation of wireless sensor nodes (WSN) using geomagnetic sensors. The main contribution is a new algorithm for supervised orientation estimation using geomagnetic fingerprinting. Combined with hierarchical sensing our approach leads to a significant reduction of power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin in Industry 4.0: Technologies, Applications and Challenges Using Multi-Agent Systems for Demand Response Aggregators: Analysis and Requirements for the Development Developing a Secure, Smart Microgrid Energy Market using Distributed Ledger Technologies An Intelligent Assistance System for Controlling Wind-Assisted Ship Propulsion Systems OPC UA Information Model and a Wrapper for IEC 61499 Runtimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1