恐怖分子和犯罪分子的社交网络数据共享和整合

Xuning Tang, Christopher C. Yang
{"title":"恐怖分子和犯罪分子的社交网络数据共享和整合","authors":"Xuning Tang, Christopher C. Yang","doi":"10.1109/ISI.2009.5137312","DOIUrl":null,"url":null,"abstract":"Social networks are valuable resources for intelligence and law enforcement force in their investigations when they want to identify suspects, terrorist or criminal subgroups and their communication patterns. However, missing information in a terrorist or criminal social network always diminish the effectiveness of investigation. Sharing and integration of social networks from different agencies helps increasing its effectiveness; however, information sharing is usually forbidden due to the concern of privacy protection. In this paper, we introduce the subgraph generalization and mechanism to integrate generalized information to conduct social network analysis.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Terrorist and criminal social network data sharing and integration\",\"authors\":\"Xuning Tang, Christopher C. Yang\",\"doi\":\"10.1109/ISI.2009.5137312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networks are valuable resources for intelligence and law enforcement force in their investigations when they want to identify suspects, terrorist or criminal subgroups and their communication patterns. However, missing information in a terrorist or criminal social network always diminish the effectiveness of investigation. Sharing and integration of social networks from different agencies helps increasing its effectiveness; however, information sharing is usually forbidden due to the concern of privacy protection. In this paper, we introduce the subgraph generalization and mechanism to integrate generalized information to conduct social network analysis.\",\"PeriodicalId\":210911,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2009.5137312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社交网络是情报部门和执法部门在调查嫌疑人、恐怖分子或犯罪团伙及其通信模式时的宝贵资源。然而,在恐怖分子或犯罪分子的社会网络中,信息缺失往往会降低侦查的有效性。来自不同机构的社会网络的共享和整合有助于提高其有效性;然而,出于隐私保护的考虑,信息共享通常是被禁止的。在本文中,我们引入了子图泛化和整合泛化信息的机制来进行社会网络分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terrorist and criminal social network data sharing and integration
Social networks are valuable resources for intelligence and law enforcement force in their investigations when they want to identify suspects, terrorist or criminal subgroups and their communication patterns. However, missing information in a terrorist or criminal social network always diminish the effectiveness of investigation. Sharing and integration of social networks from different agencies helps increasing its effectiveness; however, information sharing is usually forbidden due to the concern of privacy protection. In this paper, we introduce the subgraph generalization and mechanism to integrate generalized information to conduct social network analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1