{"title":"线性时变系统解耦与跟踪的pd -特征结构分配控制","authors":"J. Choi, H. Lee","doi":"10.1109/CDC.1999.832917","DOIUrl":null,"url":null,"abstract":"Concerns the decoupling and tracking control for linear time-varying systems, such as missiles, rockets, fighters, etc. Despite its well-known limitations, gain-scheduling control appears to be a focus of the research efforts. The scheduling of a frozen-time, frozen-state controller for fast time-varying dynamics is known to be mathematically fallacious and practically hazardous. Therefore, recent research efforts are being directed towards applying time-varying controllers. In this paper, we introduce a differential algebraic eigenvalue theory for linear time-varying systems, and a novel decoupling and tracking control scheme is proposed by using the PD (parallel differential) eigenstructure assignment scheme via the differential Sylvester equation and a CGT (command generator tracker) for linear time-varying systems. The presented method is illustrated by numerical examples.","PeriodicalId":137513,"journal":{"name":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PD-eigenstructure assignment control for decoupling and tracking of linear time-varying systems\",\"authors\":\"J. Choi, H. Lee\",\"doi\":\"10.1109/CDC.1999.832917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concerns the decoupling and tracking control for linear time-varying systems, such as missiles, rockets, fighters, etc. Despite its well-known limitations, gain-scheduling control appears to be a focus of the research efforts. The scheduling of a frozen-time, frozen-state controller for fast time-varying dynamics is known to be mathematically fallacious and practically hazardous. Therefore, recent research efforts are being directed towards applying time-varying controllers. In this paper, we introduce a differential algebraic eigenvalue theory for linear time-varying systems, and a novel decoupling and tracking control scheme is proposed by using the PD (parallel differential) eigenstructure assignment scheme via the differential Sylvester equation and a CGT (command generator tracker) for linear time-varying systems. The presented method is illustrated by numerical examples.\",\"PeriodicalId\":137513,\"journal\":{\"name\":\"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1999.832917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1999.832917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PD-eigenstructure assignment control for decoupling and tracking of linear time-varying systems
Concerns the decoupling and tracking control for linear time-varying systems, such as missiles, rockets, fighters, etc. Despite its well-known limitations, gain-scheduling control appears to be a focus of the research efforts. The scheduling of a frozen-time, frozen-state controller for fast time-varying dynamics is known to be mathematically fallacious and practically hazardous. Therefore, recent research efforts are being directed towards applying time-varying controllers. In this paper, we introduce a differential algebraic eigenvalue theory for linear time-varying systems, and a novel decoupling and tracking control scheme is proposed by using the PD (parallel differential) eigenstructure assignment scheme via the differential Sylvester equation and a CGT (command generator tracker) for linear time-varying systems. The presented method is illustrated by numerical examples.