{"title":"特征强化学习:第二部分。结构化mdp","authors":"Marcus Hutter","doi":"10.2478/jagi-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract The Feature Markov Decision Processes ( MDPs) model developed in Part I (Hutter, 2009b) is well-suited for learning agents in general environments. Nevertheless, unstructured (Φ)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend ΦMDP to ΦDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the “best” DBN representation. I discuss all building blocks required for a complete general learning algorithm, and compare the novel ΦDBN model to the prevalent POMDP approach.","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Reinforcement Learning: Part II. Structured MDPs\",\"authors\":\"Marcus Hutter\",\"doi\":\"10.2478/jagi-2021-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Feature Markov Decision Processes ( MDPs) model developed in Part I (Hutter, 2009b) is well-suited for learning agents in general environments. Nevertheless, unstructured (Φ)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend ΦMDP to ΦDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the “best” DBN representation. I discuss all building blocks required for a complete general learning algorithm, and compare the novel ΦDBN model to the prevalent POMDP approach.\",\"PeriodicalId\":247142,\"journal\":{\"name\":\"Journal of Artificial General Intelligence\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial General Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jagi-2021-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jagi-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Reinforcement Learning: Part II. Structured MDPs
Abstract The Feature Markov Decision Processes ( MDPs) model developed in Part I (Hutter, 2009b) is well-suited for learning agents in general environments. Nevertheless, unstructured (Φ)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend ΦMDP to ΦDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the “best” DBN representation. I discuss all building blocks required for a complete general learning algorithm, and compare the novel ΦDBN model to the prevalent POMDP approach.