使用深度学习的医学图像机器解释

Vidhi Chhatbar, Mihir Gondhalekar, Shruti Pimple, R. Pawar
{"title":"使用深度学习的医学图像机器解释","authors":"Vidhi Chhatbar, Mihir Gondhalekar, Shruti Pimple, R. Pawar","doi":"10.1109/GCAT52182.2021.9587518","DOIUrl":null,"url":null,"abstract":"We come across different biomedical images. It is difficult to interpret those images as they do not have any description. Image captioning is the process of generating textual description from an image which depends on the object and action in the image. With the advancement in deep learning techniques, we will build models to generate captions for biomedical images. This model will be very useful to accelerate the diagnosis process by telling the abnormalities present in the image. The model will be based on an encoder-decoder framework along with an attention model. The encoder will be using deep CNN to extract image features and the decoder will be using transformers to generate captions. Caption generating involves different complex scenarios starting from collecting the data set, training the model, validating the model, creating trained model to test the image, detecting the image and generating the captions","PeriodicalId":436231,"journal":{"name":"2021 2nd Global Conference for Advancement in Technology (GCAT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Interpretation of Medical Images Using Deep Learning\",\"authors\":\"Vidhi Chhatbar, Mihir Gondhalekar, Shruti Pimple, R. Pawar\",\"doi\":\"10.1109/GCAT52182.2021.9587518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We come across different biomedical images. It is difficult to interpret those images as they do not have any description. Image captioning is the process of generating textual description from an image which depends on the object and action in the image. With the advancement in deep learning techniques, we will build models to generate captions for biomedical images. This model will be very useful to accelerate the diagnosis process by telling the abnormalities present in the image. The model will be based on an encoder-decoder framework along with an attention model. The encoder will be using deep CNN to extract image features and the decoder will be using transformers to generate captions. Caption generating involves different complex scenarios starting from collecting the data set, training the model, validating the model, creating trained model to test the image, detecting the image and generating the captions\",\"PeriodicalId\":436231,\"journal\":{\"name\":\"2021 2nd Global Conference for Advancement in Technology (GCAT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd Global Conference for Advancement in Technology (GCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCAT52182.2021.9587518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT52182.2021.9587518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们遇到了不同的生物医学图像。这些图像没有任何描述,很难解释。图像字幕是根据图像中的对象和动作从图像中生成文本描述的过程。随着深度学习技术的进步,我们将建立模型来生成生物医学图像的说明文字。该模型将非常有用,以加快诊断过程中存在的异常图像。该模型将基于一个编码器-解码器框架以及一个注意力模型。编码器将使用深度CNN提取图像特征,解码器将使用变压器生成字幕。标题生成涉及不同的复杂场景,从收集数据集、训练模型、验证模型、创建训练模型来测试图像、检测图像和生成标题开始
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Interpretation of Medical Images Using Deep Learning
We come across different biomedical images. It is difficult to interpret those images as they do not have any description. Image captioning is the process of generating textual description from an image which depends on the object and action in the image. With the advancement in deep learning techniques, we will build models to generate captions for biomedical images. This model will be very useful to accelerate the diagnosis process by telling the abnormalities present in the image. The model will be based on an encoder-decoder framework along with an attention model. The encoder will be using deep CNN to extract image features and the decoder will be using transformers to generate captions. Caption generating involves different complex scenarios starting from collecting the data set, training the model, validating the model, creating trained model to test the image, detecting the image and generating the captions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Detection and Script Identification from Images using CNN An Analysis of Applications of Nanotechnology in Science and Engineering Design & Development of Insurance Money Predictor to Claim with Insurance Company Modified Non-Linear Programming Methodology for Multi-Attribute Decision-Making Problem with Interval-Valued Intuitionistic Fuzzy Soft Sets Information Distributed File Storage Model using IPFS and Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1