{"title":"使用喷雾模式法和可移动微电极的小神经元电路的位置选择性电记录","authors":"H. Moriguchi, N. Tamai, Y. Takayama, Y. Jimbo","doi":"10.1109/CNE.2007.369717","DOIUrl":null,"url":null,"abstract":"In the attempt to fully understand the mechanism for the formation and realization of tissue-specific functions of living multicellular systems, a couple of experimental conditions is required; grasping both the whole picture and the state of elements of a multicellular system. From this viewpoint, selecting neuronal circuits as the target, we have developed an electrical recording method from cultured small neuronal circuits by combining a simple micropatterning technique with a extracellular recording method using a mobile microelectrode. The simple micropatterning method enabled formation of thousands of individual small neuronal circuits consist of single to tens of neurons in one common 35-mm culture dish without any microfabrication apparatus by means of spraying of poly-D-lysine solution onto non-adhesive culture surfaces. Those small neuronal circuits, derived from embryonic hippocampus of rats, showed spontaneous synchronous firing after 8 days after cell seeding. Any of these small neuronal circuits were accessible with a mobile microelectrode, and their spontaneous firings were recorded noninvasively with single-cell-resolution by positioning the tip on constituent neurons. This set of methods does not require any specialized microfabrication apparatus or chemicals, and has a possibility to be used as a practical recording method of electrophysiological activities of a variety of multicellular organisms","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"20 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes\",\"authors\":\"H. Moriguchi, N. Tamai, Y. Takayama, Y. Jimbo\",\"doi\":\"10.1109/CNE.2007.369717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the attempt to fully understand the mechanism for the formation and realization of tissue-specific functions of living multicellular systems, a couple of experimental conditions is required; grasping both the whole picture and the state of elements of a multicellular system. From this viewpoint, selecting neuronal circuits as the target, we have developed an electrical recording method from cultured small neuronal circuits by combining a simple micropatterning technique with a extracellular recording method using a mobile microelectrode. The simple micropatterning method enabled formation of thousands of individual small neuronal circuits consist of single to tens of neurons in one common 35-mm culture dish without any microfabrication apparatus by means of spraying of poly-D-lysine solution onto non-adhesive culture surfaces. Those small neuronal circuits, derived from embryonic hippocampus of rats, showed spontaneous synchronous firing after 8 days after cell seeding. Any of these small neuronal circuits were accessible with a mobile microelectrode, and their spontaneous firings were recorded noninvasively with single-cell-resolution by positioning the tip on constituent neurons. This set of methods does not require any specialized microfabrication apparatus or chemicals, and has a possibility to be used as a practical recording method of electrophysiological activities of a variety of multicellular organisms\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"20 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes
In the attempt to fully understand the mechanism for the formation and realization of tissue-specific functions of living multicellular systems, a couple of experimental conditions is required; grasping both the whole picture and the state of elements of a multicellular system. From this viewpoint, selecting neuronal circuits as the target, we have developed an electrical recording method from cultured small neuronal circuits by combining a simple micropatterning technique with a extracellular recording method using a mobile microelectrode. The simple micropatterning method enabled formation of thousands of individual small neuronal circuits consist of single to tens of neurons in one common 35-mm culture dish without any microfabrication apparatus by means of spraying of poly-D-lysine solution onto non-adhesive culture surfaces. Those small neuronal circuits, derived from embryonic hippocampus of rats, showed spontaneous synchronous firing after 8 days after cell seeding. Any of these small neuronal circuits were accessible with a mobile microelectrode, and their spontaneous firings were recorded noninvasively with single-cell-resolution by positioning the tip on constituent neurons. This set of methods does not require any specialized microfabrication apparatus or chemicals, and has a possibility to be used as a practical recording method of electrophysiological activities of a variety of multicellular organisms