{"title":"带有嵌入式触摸传感器的3D打印机械手","authors":"M. Ntagios, P. Escobedo, R. Dahiya","doi":"10.1109/FLEPS49123.2020.9239587","DOIUrl":null,"url":null,"abstract":"This paper presents a 3D printed robotic hand designed to have two capacitive touch sensors embedded in the distal phalanges of the fingers. Additionally, the readout electronics have been designed and fabricated to obtain the digital values of the capacitances and to use this data for touch feedback control. The touch or pressure sensors were fabricated by 3D printed electrodes using copper based conductive filament and a two part-rubber as the dielectric. The sensitive rmgertip was tested with dynamic and static stimuli and the average sensitivity of the sensors was found to be 0.6% N-1. The proof-of-concept robot hand developed here shows that the concept could be applied to develop the 3D printed embedded sensorised systems or instrumented objects needed for applications such as internet of things and human-computer interaction.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"3D Printed Robotic Hand with Embedded Touch Sensors\",\"authors\":\"M. Ntagios, P. Escobedo, R. Dahiya\",\"doi\":\"10.1109/FLEPS49123.2020.9239587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 3D printed robotic hand designed to have two capacitive touch sensors embedded in the distal phalanges of the fingers. Additionally, the readout electronics have been designed and fabricated to obtain the digital values of the capacitances and to use this data for touch feedback control. The touch or pressure sensors were fabricated by 3D printed electrodes using copper based conductive filament and a two part-rubber as the dielectric. The sensitive rmgertip was tested with dynamic and static stimuli and the average sensitivity of the sensors was found to be 0.6% N-1. The proof-of-concept robot hand developed here shows that the concept could be applied to develop the 3D printed embedded sensorised systems or instrumented objects needed for applications such as internet of things and human-computer interaction.\",\"PeriodicalId\":101496,\"journal\":{\"name\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FLEPS49123.2020.9239587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D Printed Robotic Hand with Embedded Touch Sensors
This paper presents a 3D printed robotic hand designed to have two capacitive touch sensors embedded in the distal phalanges of the fingers. Additionally, the readout electronics have been designed and fabricated to obtain the digital values of the capacitances and to use this data for touch feedback control. The touch or pressure sensors were fabricated by 3D printed electrodes using copper based conductive filament and a two part-rubber as the dielectric. The sensitive rmgertip was tested with dynamic and static stimuli and the average sensitivity of the sensors was found to be 0.6% N-1. The proof-of-concept robot hand developed here shows that the concept could be applied to develop the 3D printed embedded sensorised systems or instrumented objects needed for applications such as internet of things and human-computer interaction.