P. Hungler, C. Thurgood, M. Marinova, Steve White, Lev Mirzoian, Matthew Thoms, Janice Law, Michael Chabot, Kimia Moozeh
{"title":"开源虚拟现实化工加工厂的设计与开发","authors":"P. Hungler, C. Thurgood, M. Marinova, Steve White, Lev Mirzoian, Matthew Thoms, Janice Law, Michael Chabot, Kimia Moozeh","doi":"10.24908/pceea.vi.15939","DOIUrl":null,"url":null,"abstract":"It is challenging to provide students studying in chemical engineering, biotechnology and other related fields with an opportunity to tour and interact with a full-scale chemical processing plant. To address this challenge, an open-sourced virtual reality (VR) chemical processing plant was designed and built to provide students with an experiential learning opportunity. The VR plant is modelled after an ampicillin processing facility complete with a piping and instrumentation diagram (P&ID). The initial student experience inside the VR plant is a tour of the plant, various plant features and unit operations. The tour enables students to freely tour the plant but also engages them in a “Quest” style experience where they need to search for specific areas and components within the plant. An EngPad was designed to provide learners with a help tool to assist their navigation and strengthen their understanding during the VR experience. Experiential learning theory was used to guide the design of the VR application and take students through the four learning modes of concrete experience, reflective observation, abstract conceptualization, and active experimentation. A focus group provided feedback on the design and user interaction of the VR experience. This paper will outline how design features and enhancements were selected based on their connection to experiential learning theory.","PeriodicalId":314914,"journal":{"name":"Proceedings of the Canadian Engineering Education Association (CEEA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of an Open-Source Virtual Reality Chemical Processing Plant\",\"authors\":\"P. Hungler, C. Thurgood, M. Marinova, Steve White, Lev Mirzoian, Matthew Thoms, Janice Law, Michael Chabot, Kimia Moozeh\",\"doi\":\"10.24908/pceea.vi.15939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is challenging to provide students studying in chemical engineering, biotechnology and other related fields with an opportunity to tour and interact with a full-scale chemical processing plant. To address this challenge, an open-sourced virtual reality (VR) chemical processing plant was designed and built to provide students with an experiential learning opportunity. The VR plant is modelled after an ampicillin processing facility complete with a piping and instrumentation diagram (P&ID). The initial student experience inside the VR plant is a tour of the plant, various plant features and unit operations. The tour enables students to freely tour the plant but also engages them in a “Quest” style experience where they need to search for specific areas and components within the plant. An EngPad was designed to provide learners with a help tool to assist their navigation and strengthen their understanding during the VR experience. Experiential learning theory was used to guide the design of the VR application and take students through the four learning modes of concrete experience, reflective observation, abstract conceptualization, and active experimentation. A focus group provided feedback on the design and user interaction of the VR experience. This paper will outline how design features and enhancements were selected based on their connection to experiential learning theory.\",\"PeriodicalId\":314914,\"journal\":{\"name\":\"Proceedings of the Canadian Engineering Education Association (CEEA)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Canadian Engineering Education Association (CEEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24908/pceea.vi.15939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Canadian Engineering Education Association (CEEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24908/pceea.vi.15939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Development of an Open-Source Virtual Reality Chemical Processing Plant
It is challenging to provide students studying in chemical engineering, biotechnology and other related fields with an opportunity to tour and interact with a full-scale chemical processing plant. To address this challenge, an open-sourced virtual reality (VR) chemical processing plant was designed and built to provide students with an experiential learning opportunity. The VR plant is modelled after an ampicillin processing facility complete with a piping and instrumentation diagram (P&ID). The initial student experience inside the VR plant is a tour of the plant, various plant features and unit operations. The tour enables students to freely tour the plant but also engages them in a “Quest” style experience where they need to search for specific areas and components within the plant. An EngPad was designed to provide learners with a help tool to assist their navigation and strengthen their understanding during the VR experience. Experiential learning theory was used to guide the design of the VR application and take students through the four learning modes of concrete experience, reflective observation, abstract conceptualization, and active experimentation. A focus group provided feedback on the design and user interaction of the VR experience. This paper will outline how design features and enhancements were selected based on their connection to experiential learning theory.