网络上个性化的新闻过滤和摘要

Xindong Wu, Fei Xie, Gongqing Wu, W. Ding
{"title":"网络上个性化的新闻过滤和摘要","authors":"Xindong Wu, Fei Xie, Gongqing Wu, W. Ding","doi":"10.1109/ICTAI.2011.68","DOIUrl":null,"url":null,"abstract":"Information on the World Wide Web is congested with large amounts of news contents. Recommendation, filtering, and summarization of Web news have received much attention in Web intelligence, aiming to find interesting news and summarize concise content for users. In this paper, we present our research on developing the Personalized News Filtering and Summarization system (PNFS). An embedded learning component of PNFS induces a user interest model and recommends personalized news. A keyword knowledge base is maintained and provides a real-time update to reflect the general Web news topic information and the user's interest preferences. The non-news content irrelevant to the news Web page is filtered out. Keywords that capture the main topic of the news are extracted using lexical chains to represent semantic relations between words. An Example run of our PNFS system demonstrates the superiority of this Web intelligence system.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Personalized News Filtering and Summarization on the Web\",\"authors\":\"Xindong Wu, Fei Xie, Gongqing Wu, W. Ding\",\"doi\":\"10.1109/ICTAI.2011.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information on the World Wide Web is congested with large amounts of news contents. Recommendation, filtering, and summarization of Web news have received much attention in Web intelligence, aiming to find interesting news and summarize concise content for users. In this paper, we present our research on developing the Personalized News Filtering and Summarization system (PNFS). An embedded learning component of PNFS induces a user interest model and recommends personalized news. A keyword knowledge base is maintained and provides a real-time update to reflect the general Web news topic information and the user's interest preferences. The non-news content irrelevant to the news Web page is filtered out. Keywords that capture the main topic of the news are extracted using lexical chains to represent semantic relations between words. An Example run of our PNFS system demonstrates the superiority of this Web intelligence system.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

万维网上的信息充斥着大量的新闻内容。Web新闻的推荐、过滤和摘要在Web智能中备受关注,其目的是为用户发现有趣的新闻,总结简洁的内容。本文介绍了个性化新闻过滤与摘要系统(PNFS)的开发研究。PNFS的嵌入式学习组件诱导用户兴趣模型并推荐个性化新闻。维护关键字知识库并提供实时更新,以反映一般Web新闻主题信息和用户的兴趣偏好。与新闻网页无关的非新闻内容被过滤掉。利用词汇链来表示词与词之间的语义关系,提取新闻主题的关键词。PNFS系统的实例运行证明了该Web智能系统的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalized News Filtering and Summarization on the Web
Information on the World Wide Web is congested with large amounts of news contents. Recommendation, filtering, and summarization of Web news have received much attention in Web intelligence, aiming to find interesting news and summarize concise content for users. In this paper, we present our research on developing the Personalized News Filtering and Summarization system (PNFS). An embedded learning component of PNFS induces a user interest model and recommends personalized news. A keyword knowledge base is maintained and provides a real-time update to reflect the general Web news topic information and the user's interest preferences. The non-news content irrelevant to the news Web page is filtered out. Keywords that capture the main topic of the news are extracted using lexical chains to represent semantic relations between words. An Example run of our PNFS system demonstrates the superiority of this Web intelligence system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1