从分割视频中融合情感维度和视听特征用于抑郁症识别:INAOE-BUAP参加AVEC'14挑战赛

AVEC '14 Pub Date : 2014-11-07 DOI:10.1145/2661806.2661815
Humberto Pérez Espinosa, H. Escalante, Luis Villaseñor-Pineda, M. Montes-y-Gómez, David Pinto, Verónica Reyes-Meza
{"title":"从分割视频中融合情感维度和视听特征用于抑郁症识别:INAOE-BUAP参加AVEC'14挑战赛","authors":"Humberto Pérez Espinosa, H. Escalante, Luis Villaseñor-Pineda, M. Montes-y-Gómez, David Pinto, Verónica Reyes-Meza","doi":"10.1145/2661806.2661815","DOIUrl":null,"url":null,"abstract":"Depression is a disease that affects a considerable portion of the world population. Severe cases of depression interfere with the common live of patients, for those patients a strict monitoring is necessary in order to control the progress of the disease and to prevent undesired side effects. A way to keep track of patients with depression is by means of online monitoring via human-computer-interaction. The AVEC'14 challenge aims at developing technology towards the online monitoring of depression patients. This paper describes an approach to depression recognition from audiovisual information in the context of the AVEC'14 challenge. The proposed method relies on an effective voice segmentation procedure, followed by segment-level feature extraction and aggregation. Finally, a meta-model is trained to fuse mono-modal information. The main novel features of our proposal are that (1) we use affective dimensions for building depression recognition models; (2) we extract visual information from voice and silence segments separately; (3) we consolidate features and use a meta-model for fusion. The proposed methodology is evaluated, experimental results reveal the method is competitive.","PeriodicalId":318508,"journal":{"name":"AVEC '14","volume":"802 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Fusing Affective Dimensions and Audio-Visual Features from Segmented Video for Depression Recognition: INAOE-BUAP's Participation at AVEC'14 Challenge\",\"authors\":\"Humberto Pérez Espinosa, H. Escalante, Luis Villaseñor-Pineda, M. Montes-y-Gómez, David Pinto, Verónica Reyes-Meza\",\"doi\":\"10.1145/2661806.2661815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depression is a disease that affects a considerable portion of the world population. Severe cases of depression interfere with the common live of patients, for those patients a strict monitoring is necessary in order to control the progress of the disease and to prevent undesired side effects. A way to keep track of patients with depression is by means of online monitoring via human-computer-interaction. The AVEC'14 challenge aims at developing technology towards the online monitoring of depression patients. This paper describes an approach to depression recognition from audiovisual information in the context of the AVEC'14 challenge. The proposed method relies on an effective voice segmentation procedure, followed by segment-level feature extraction and aggregation. Finally, a meta-model is trained to fuse mono-modal information. The main novel features of our proposal are that (1) we use affective dimensions for building depression recognition models; (2) we extract visual information from voice and silence segments separately; (3) we consolidate features and use a meta-model for fusion. The proposed methodology is evaluated, experimental results reveal the method is competitive.\",\"PeriodicalId\":318508,\"journal\":{\"name\":\"AVEC '14\",\"volume\":\"802 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVEC '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2661806.2661815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVEC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661806.2661815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

抑郁症是一种影响世界上相当一部分人口的疾病。严重的抑郁症干扰了患者的日常生活,对这些患者进行严格的监测是必要的,以控制病情的进展,防止不良的副作用。跟踪抑郁症患者的一种方法是通过人机交互进行在线监测。AVEC第14届挑战赛旨在开发在线监测抑郁症患者的技术。本文描述了在AVEC'14挑战的背景下,从视听信息中识别抑郁症的方法。该方法依赖于一个有效的语音分割过程,然后是段级特征提取和聚合。最后,训练元模型来融合单模态信息。本文的主要新颖之处在于:(1)我们使用情感维度来构建抑郁症识别模型;(2)分别从语音段和沉默段提取视觉信息;(3)整合特征并使用元模型进行融合。对该方法进行了评价,实验结果表明该方法具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusing Affective Dimensions and Audio-Visual Features from Segmented Video for Depression Recognition: INAOE-BUAP's Participation at AVEC'14 Challenge
Depression is a disease that affects a considerable portion of the world population. Severe cases of depression interfere with the common live of patients, for those patients a strict monitoring is necessary in order to control the progress of the disease and to prevent undesired side effects. A way to keep track of patients with depression is by means of online monitoring via human-computer-interaction. The AVEC'14 challenge aims at developing technology towards the online monitoring of depression patients. This paper describes an approach to depression recognition from audiovisual information in the context of the AVEC'14 challenge. The proposed method relies on an effective voice segmentation procedure, followed by segment-level feature extraction and aggregation. Finally, a meta-model is trained to fuse mono-modal information. The main novel features of our proposal are that (1) we use affective dimensions for building depression recognition models; (2) we extract visual information from voice and silence segments separately; (3) we consolidate features and use a meta-model for fusion. The proposed methodology is evaluated, experimental results reveal the method is competitive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal Prediction of Affective Dimensions and Depression in Human-Computer Interactions Automatic Depression Scale Prediction using Facial Expression Dynamics and Regression Depression Estimation Using Audiovisual Features and Fisher Vector Encoding The SRI AVEC-2014 Evaluation System Emotion Recognition and Depression Diagnosis by Acoustic and Visual Features: A Multimodal Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1