激励与压缩感知结合在单稳态散射快速计算中的应用

Xin He, Jun Hu, Z. Nie
{"title":"激励与压缩感知结合在单稳态散射快速计算中的应用","authors":"Xin He, Jun Hu, Z. Nie","doi":"10.1109/CSQRWC.2013.6657371","DOIUrl":null,"url":null,"abstract":"This paper introduces a new-type combination of excitations to reduce the amount of data needed for monostatic excitation vectors, instead of multiple excitations over a wide angle. And based on MLFMA we used Compressive Sensing (CS) technique to recover original signal. Numerical results demonstrate that the combination of excitations is efficient to solve 3D monostatic scattering problems.","PeriodicalId":355180,"journal":{"name":"2013 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference","volume":"414 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Application of combination of excitations and compressed sensing for fast computation of monostatic scattering\",\"authors\":\"Xin He, Jun Hu, Z. Nie\",\"doi\":\"10.1109/CSQRWC.2013.6657371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new-type combination of excitations to reduce the amount of data needed for monostatic excitation vectors, instead of multiple excitations over a wide angle. And based on MLFMA we used Compressive Sensing (CS) technique to recover original signal. Numerical results demonstrate that the combination of excitations is efficient to solve 3D monostatic scattering problems.\",\"PeriodicalId\":355180,\"journal\":{\"name\":\"2013 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference\",\"volume\":\"414 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSQRWC.2013.6657371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSQRWC.2013.6657371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了一种新型的激励组合,以减少单静态激励矢量所需的数据量,而不是在一个广角上的多个激励。在MLFMA的基础上,采用压缩感知(CS)技术恢复原始信号。数值结果表明,组合激励是解决三维单稳态散射问题的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of combination of excitations and compressed sensing for fast computation of monostatic scattering
This paper introduces a new-type combination of excitations to reduce the amount of data needed for monostatic excitation vectors, instead of multiple excitations over a wide angle. And based on MLFMA we used Compressive Sensing (CS) technique to recover original signal. Numerical results demonstrate that the combination of excitations is efficient to solve 3D monostatic scattering problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A preconditioner for surface integral equation formulations of dielectric problems Development of a middleware for exploring practicality of IEEE 1451 protocol family A novel joint parameter estimation method of single-channel and time-frequency overlapped multi-component signal A rang-free location method based on differential evolution algorithm Analysis of near-field characteristic of airborne antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1