{"title":"基于深度学习方法的COVID-19感染流行病学预测","authors":"A. Blagojević, T. Šušteršič, Nenad Filipović","doi":"10.1109/BIBE52308.2021.9635289","DOIUrl":null,"url":null,"abstract":"Since the novel SARS-CoV-2 virus appeared, interest in developing epidemiological mechanisms that would help in prevention of its spread has increased. Epidemiological models are the most important mechanisms for examining the spread of the virus. For that purpose, we propose deep learning approach, LSTM neural network model. LSTM is a special kind of neural network structure capable of learning long-term dependencies in sequence prediction problems. The model was fed with official statistical data available online for Belgium in the period of March 15th, 2020 to March 15th, 2021. Results show that LSTM is capable of predicting in long-term manner with the low values of RMSE and MAE. Higher values of RMSE and MAE are observed in the infected cases (RMSE was 397.23 and MAE was 315.35) which is expected due to thousands of infected people per day in Belgium. In future studies, we will include more phenomena, especially medical intervention and asymptomatic infection, in order to better describe the COVID-19 spread and development.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epidemiological forecasting of COVID-19 infection using deep learning approach\",\"authors\":\"A. Blagojević, T. Šušteršič, Nenad Filipović\",\"doi\":\"10.1109/BIBE52308.2021.9635289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the novel SARS-CoV-2 virus appeared, interest in developing epidemiological mechanisms that would help in prevention of its spread has increased. Epidemiological models are the most important mechanisms for examining the spread of the virus. For that purpose, we propose deep learning approach, LSTM neural network model. LSTM is a special kind of neural network structure capable of learning long-term dependencies in sequence prediction problems. The model was fed with official statistical data available online for Belgium in the period of March 15th, 2020 to March 15th, 2021. Results show that LSTM is capable of predicting in long-term manner with the low values of RMSE and MAE. Higher values of RMSE and MAE are observed in the infected cases (RMSE was 397.23 and MAE was 315.35) which is expected due to thousands of infected people per day in Belgium. In future studies, we will include more phenomena, especially medical intervention and asymptomatic infection, in order to better describe the COVID-19 spread and development.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Epidemiological forecasting of COVID-19 infection using deep learning approach
Since the novel SARS-CoV-2 virus appeared, interest in developing epidemiological mechanisms that would help in prevention of its spread has increased. Epidemiological models are the most important mechanisms for examining the spread of the virus. For that purpose, we propose deep learning approach, LSTM neural network model. LSTM is a special kind of neural network structure capable of learning long-term dependencies in sequence prediction problems. The model was fed with official statistical data available online for Belgium in the period of March 15th, 2020 to March 15th, 2021. Results show that LSTM is capable of predicting in long-term manner with the low values of RMSE and MAE. Higher values of RMSE and MAE are observed in the infected cases (RMSE was 397.23 and MAE was 315.35) which is expected due to thousands of infected people per day in Belgium. In future studies, we will include more phenomena, especially medical intervention and asymptomatic infection, in order to better describe the COVID-19 spread and development.