从多模态传感器识别人类活动

S. Chen, Y. Huang
{"title":"从多模态传感器识别人类活动","authors":"S. Chen, Y. Huang","doi":"10.1109/ISI.2009.5137308","DOIUrl":null,"url":null,"abstract":"This paper describes a method of detecting and monitoring human activities which are extremely useful for understanding human behaviors and recognizing human interactions in a social network. By taking advantage of current wireless sensor network technologies, physical activities can be recognized through classifying multi-modal sensors data. The result shows that high recognition accuracy on a dataset of 6 daily activities of one carrier can be achieved by using suitable classifiers.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Recognizing human activities from multi-modal sensors\",\"authors\":\"S. Chen, Y. Huang\",\"doi\":\"10.1109/ISI.2009.5137308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method of detecting and monitoring human activities which are extremely useful for understanding human behaviors and recognizing human interactions in a social network. By taking advantage of current wireless sensor network technologies, physical activities can be recognized through classifying multi-modal sensors data. The result shows that high recognition accuracy on a dataset of 6 daily activities of one carrier can be achieved by using suitable classifiers.\",\"PeriodicalId\":210911,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2009.5137308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一种检测和监测人类活动的方法,这对于理解人类行为和识别社会网络中的人类互动非常有用。利用现有的无线传感器网络技术,通过对多模态传感器数据进行分类,实现对身体活动的识别。结果表明,在一个载体的6个日常活动数据集上,使用合适的分类器可以达到较高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognizing human activities from multi-modal sensors
This paper describes a method of detecting and monitoring human activities which are extremely useful for understanding human behaviors and recognizing human interactions in a social network. By taking advantage of current wireless sensor network technologies, physical activities can be recognized through classifying multi-modal sensors data. The result shows that high recognition accuracy on a dataset of 6 daily activities of one carrier can be achieved by using suitable classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1