基于二维倒谱的SAR图像人造目标分类

Abdulkadir Eryildirim, A. Enis Cetin
{"title":"基于二维倒谱的SAR图像人造目标分类","authors":"Abdulkadir Eryildirim, A. Enis Cetin","doi":"10.1109/RADAR.2009.4976990","DOIUrl":null,"url":null,"abstract":"In this paper, a novel descriptive feature parameter extraction method from Synthetic Aperture Radar (SAR) images is proposed. The new method is based on the two-dimensional (2-D) real cepstrum. This novel 2-D cepstrum method is compared with principal component analysis (PCA) method by testing over the MSTAR image database. The extracted features are classified using Support Vector Machine (SVM). We demonstrate that discrimination of natural background (clutter) and man-made objects (metal objects) in SAR imagery is possible using the 2-D cepstrum feature parameters. In addition, the computational cost of the cepstrum method is lower than the PCA method. Experimental results are presented.","PeriodicalId":346898,"journal":{"name":"2009 IEEE Radar Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Man-made object classification in SAR images using 2-D cepstrum\",\"authors\":\"Abdulkadir Eryildirim, A. Enis Cetin\",\"doi\":\"10.1109/RADAR.2009.4976990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel descriptive feature parameter extraction method from Synthetic Aperture Radar (SAR) images is proposed. The new method is based on the two-dimensional (2-D) real cepstrum. This novel 2-D cepstrum method is compared with principal component analysis (PCA) method by testing over the MSTAR image database. The extracted features are classified using Support Vector Machine (SVM). We demonstrate that discrimination of natural background (clutter) and man-made objects (metal objects) in SAR imagery is possible using the 2-D cepstrum feature parameters. In addition, the computational cost of the cepstrum method is lower than the PCA method. Experimental results are presented.\",\"PeriodicalId\":346898,\"journal\":{\"name\":\"2009 IEEE Radar Conference\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2009.4976990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2009.4976990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种新的合成孔径雷达(SAR)图像描述特征参数提取方法。该方法基于二维实倒谱。通过在MSTAR图像数据库上的测试,将该二维倒谱方法与主成分分析方法进行了比较。使用支持向量机(SVM)对提取的特征进行分类。我们证明了使用二维倒谱特征参数可以区分SAR图像中的自然背景(杂波)和人造物体(金属物体)。此外,倒谱法的计算量比主成分分析法要小。给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Man-made object classification in SAR images using 2-D cepstrum
In this paper, a novel descriptive feature parameter extraction method from Synthetic Aperture Radar (SAR) images is proposed. The new method is based on the two-dimensional (2-D) real cepstrum. This novel 2-D cepstrum method is compared with principal component analysis (PCA) method by testing over the MSTAR image database. The extracted features are classified using Support Vector Machine (SVM). We demonstrate that discrimination of natural background (clutter) and man-made objects (metal objects) in SAR imagery is possible using the 2-D cepstrum feature parameters. In addition, the computational cost of the cepstrum method is lower than the PCA method. Experimental results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From AESA radar to digital radar for surface-based applications Waveform design for distributed aperture in through-the-wall radar Development of a FPGA-based high speed FFT processor for wideband Direction of Arrival applications Developments in the Frequency Diverse Bistatic System Multi-wavelength impacts on coastal radar performance during a sea breeze
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1